CHAPTER 4

SIMULATION METHODOLOGY

This chapter describes the methodology used to design and implement the simulation
to examine the performance of the proposed adaptive error control algorithm. First, a
description of the PARSEC simulation language is given, followed by a discussion of
the simulation environment which includes interaction process between entities, and
the system parameters that are used throughout the simulations. Finally, the

assumptions for this simulation are elaborated.

41 The PARSEC Language

PARSEC (PARallel Simulation Environment for Complex systems) is a C-based
discrete-event simulation language developed at the Computer Science Department at
UCLA. This simulation language adopts the process interaction approach to
discrete-event simulation. An object (also referred to as a physical process) or set of
objects in the physical system is represented by a logical process. Interactions among
physical processes are modeled by time-stamped message exchanges among the

corresponding logical processes.

The PARSEC language is derived from Maisie, but with several improvements both in
the syntax of the language and in its execution environment. The PARSEC language is
based on C, but introduces several new features. PARSEC programs consist of entities,

which exchange messages each other.

49

4.1.1 PARSEC Entities

An entity definition describes a class of objects. An entity instance, henceforth referred
to simply as an entity, represents a specific object in the physical system and may be
created and destroyed dynamically. An entity is created by the execution of a new
statement and is automatically assigned a unique identifier on creation. For instance,
the following statement creates a new instance of a manager entity and stores its
identifier in variable r1.

ename r1;

r1 = new manager (N);

An entity can reference its own identifier using the keyword self. PARSEC entity may
terminate itself in any of the following ways: by executing a C return statement, by
‘falling off the end’ of the entity-body. All entities still active at the end of a simulation
will be terminated by the runtime system. If an entity definition includes a finalize
statement, the body of the finalize statement will be executed upon a normal
termination of each instance of that entity type. The finalize statement is most useful

for collecting the results of a program at its conclusion.

412 M C ication between E

Simulation entities communicate with each other using buffered message passing.
PARSEC defines a type called message, which is used to define the types of messages
that may be received by an entity. Definition of a message-type is similar to a struct;
the following declares a message-type called request with one parameter (or field)
called count.

message request {int count;};

50

Every entity is associated with a unique message buffer. A message is deposited in the
message buffer of an entity by executing a send statement. The send statement
performs an asynchronous send: the sending entity copies the message parameters
into a memory block, delivers the message to the underlying communication network,
and resumes execution. The following statement will deposit a message of type request
with time stamp clock()+ t, where clock is the current value of the simulation clock, in

the message buffer of entity m1.

send request (2} to m1 after t;

If the after clause is omitted, the message is time stamped with the current simulation

time. If required, an appropriate hold statement may be executed to model message

tr ission times or a sep entity may be defined to simulate the transmission
medium. An entity accepts messages from its message buffer by executing a receive
statement. The receive statement consists of one or more resume clauses, and possibly
a timeout clause. Each resume-clause consists of a read-only message variable, and an
optimal guard followed by a statement. The timeout clause specifies a wait-time (t). 1f
t is omitted, it is set to an arbitrarily large value. The resume-clause is a set of resume

statements, each of which has the following form:
receive (m; m;) [when bj] statement; ;
where m, is a message-type, m; is a read-only message variable, b; an optional boolean

expression referred to as a guard, and statement; is any C or PARSEC statement. The

guard is a side-effect free boolean expression that may reference local variables or

51

message parameters. If omitted, the guard is assumed to be the constant true. The
message-type and guard together are referred to as a resume condition. A resume
condition with message-type m and guard b; is said to be enabled if the message
buffer contains a message of type my, which if delivered to the entity would cause b; to

evaluate to true; the corresponding is called an enabling ge. In general,

5

the buffer may contain many enabling messages.

With the wait-time omitted, the wait statement is essentially a selective receive
command that allows an entity to accept a particular message only when it is ready to
process the message. For instance, the following receive statement consists of two
resume statements. The resume condition in the first statement ensures that a req
message is accepted only if the requested number of units are currently available (the
requests are serviced in first-fit manner). The second resume statement accepts a free

message:

receive (request req) when (req.count <= units)

or timeout in (free)

PARSEC also provides a number of pre-defined functions that may be used by an
entity to inspect its message buffer. For instance, the function gsize(m) returns the
number of messages of type m, in the buffer. A special form of this function called
qempty(m,) is defined, which returns true if the buffer does not contain any messages
of type my, and returns false otherwise. In general, the resume condition in a wait

statement may include multiple message-types, each with its own boolean expression.

52

This allows many complex-enabling conditions to be expressed directly, without

requiring the programmer to describe the buffering explicitly.

If two or more resume conditions in a receive statement are enabled, the time stamps
on the corresponding enabling messages are compared and the message with the
earliest time stamp is removed and delivered to the entity. If no resume condition is
enabled, a timeout message is scheduled for the entity t. time units in the future. The
timeout message is canceled if the entity receives an enabling message prior to
expiration of t; otherwise, the timeout message is sent to the entity on expiration of
interval t.. Thus the receive statement can be used to schedule conditional events. A
hold statement is provided to unconditionally delay an entity for a specified
simulation time. For instance, the statement hold (t) will suspend the corresponding

entity for t units in simulation time.
4.1.3 The Driver Entity

Every PARSEC program must include an entity called driver. This entity serves a
purpose similar to the main function of a C prc;gram. Execution of a PARSEC program
is initiated by executir;g the first statement in the body of entity driver. The driver
entity takes the same argc and argv parameters as the C main function (except that
argv must be declared char** argv because of PARSEC's requirement that array
parameters have a constant size). Parameters recognized by the PARSEC runtime

system will be removed from argc and argv before the driver is invoked.

53

414 Entity Scheduling

In a PARSEC program, an arbitrary number of entities may be mapped to a single
processor. The execution of these entities is interleaved by the PARSEC scheduler.
Entities are scheduled for execution based on the timestamps of their enabling

messages.

An entity can be in one of four states: idle, ready, active, or terminated. An entity that
has been terminated does not participate any further in the program. An entity that
has not been terminated is said to be idle if its message buffer does not contain any
enabling message. An entity whose buffer contains an enabling message is said to be
ready; at any given point, multiple entities on a processor may be in the ready state.
The scheduler selects the ready entity with the earliest enabling message for execution
which then becomes active. An active entity relinquishes control to the scheduler only
if it is terminated or it executes a hold or receive statement. In the latter case, if its
buffer contains an enabling message it transits to the ready state (and is hence eligible
to become active immediately); if not, it transits to the idle state. It is important to note
that an active entity is self-scheduled: the s;cheduler cannot force it to relinquish
control. In particular, an active entity that never executes a receive (or hold) statement,

will never relinquish control to the scheduler.
4.1.5 Other Features

The other features provided by PARSEC simulation language are program termination

and clock operations. When a termination condition is detected in a program, each

54

entity's finalize statement will be called. The entity may take appropriate actions
before termination, including printing accumulated statistical data. A PARSEC

simulation terminates, whenever one of the following conditions arise:

1. The simulation clock exceeds the maximum simulation time specified by
setmaxclock().
2. All entities are suspended and no messages (including timeouts) are in transit.

3. An entity executes an exit() or pc_exit() statement.

Another feature is clock operations. This feature allow simulations to be executed over
longer duration with fine grained clock values, the PARSEC system clock is
implemented as a large integral type called clocktype. All clock operations make use
of clocktype variables. The following functions are provided to manipulate the

simulation clock:

1. simclock(void): This function returns the value of the current simulation clock as a
clocktype value.

2. setmaxclock(clocktype): This function sets the; maximum simulation time to the value
specified in the ;mmerical-sh'i.ng. The simulation is terminated when the
simulation clock exceeds this value.

3. atoc(char*, clocktype): Places the clocktype value represented by the string in the
clocktype parameter.

4. ctoa(clocktype, char*): Like sprintf, it prints the value of the clocktype parameter

into the string parameter.

55

4.2 The Simulation Environment

As explained in the previous section, simulations were performed using the PARSEC
simulation language. Another famous simulation language, Maisie is not used as a
simulation environment because the PARSEC introduces several new features, both in
the syntax of the language and in its execution environment. This simulation
environment, allows for the creation of entities which operate in parallel and
communicate via message passing. Furthermore, a common system clock is available

to all of the entities in the simulation process.

4.2.1 Entities Interactions

For the purpose of this study, entities were defined to represent mobile hosts and
communication channels. Briefly, there are five entities exist at one run time
simulation: a driver, a source, a sender, a channel, and a receiver. The receiver entity can be
either error_ctrl, error_ctrl2 and error_ctrl3 entities depend on user’s selection parameter
during program execution. These three different kinds of receiver entity represent the
algorithms that user will choose at runtime simulation. The following is a description

of the functions performed by each entity.

Driver Entity

The first entity is the Driver entity, which must be defined for every PARSEC program.
The entity sets up the simulation, reads the command line and instantiated the various
entities. This entity performs a job like the main() function in a standard C program.

Execution of a PARSEC program is initiated by executing the first statement in the

56

body of Driver entity. The driver entity takes the same argc and argv parameters as the
C main function. Parameters recognized by the PARSEC runtime system is removed
from arge and argv before the driver is invoked. In this simulation, the entities are
created by using the new() statement. For example, the four new instances of the

various entities created by Driver entity are as follows,

Driver entity

Error_Ctrl3
entity
(Receiver)

Error_Ctrl . Error_Ctrl2
entity | entity
entity (Receiver) (Receiver)

Figure 4.1: The new instances of the various entities created by Driver entity

The five entities (in Figure 4.1) which make up the simulation interact via message
passing. Data is passed from one entity to another entity. The interface between the
Source and Sender entity depends on the source type. As mentioned previously, the
source types implemented are speech and data sources. When a speech source type is
used, data is generated and sent 32 kbps. When a data source type is used, the Sender
uses DataRegMsg message to initiate the transfer of data from Source to Sender entity
and also sent at 32 kbps. The 32kbps were chosen as a reasonable rate for encoded
speech and data. It could be faster or slower, depending on the type of encoding. The
remaining interfaces are constant. Data is sent from Source to Channel in the same way

acknowledgements are sent from Receiver to Channel. Either entity must request the

channel’s attention with request to send message, and wait for the clear to send

response before sending the data.

The entities defined for the simulation and their interaction with each other are shown

in Figure 4.2 and 4.3.

Source Entity

The entity pulls data from an input file and sends it to the Sender entity. The input file
contains set of data created by the Source entity. The Source entity is responsible for
generating traffic based on exponentially distributed On/Off period. Source entity is
created by the driver entity across simulation time as a Poisson process (calls/second).
Source has to consult with Sender entity which buffer is stored before they start
generating and sending the traffic. In another word, this entity is primarily

responsible for generating workload to be used on transmission.

The entity communicates with the Sender entity by sending a NewDataMsg message for
speech source type. For data source type, the entity sends that message after receiving
DataRegMsg from the Sender entity. The difference is caused by feeding style either on
demand as would be the case in a file transfer, or at regular intervals, as if a source of

multimedia data.

Sender Entity
This is the second entity in the simulation that transmits data to the Receiver entity. The
Sender entity must then segment the data and add error control coding as the data

arrives. The segmentation process will be explained more details in the Section 4.2.4.

58

After finish performs this process, the entity then sends a request message,
ReqToSendMsg, to the Channel entity. If the access request is granted it sends a
ClearToSendMsg message to this entity. After this notification, the Sender entity sends a
PacketMsg message which contains a packet to the Channel entity. If acknowledgement
is activated, it waits for an acknowledgement before proceeding. If after a timeout, no
acknowledgement arrives, a retransmission is performed. Error control coding such as

is applied here as required.

Source

(speech)

NewD ReqToSendMsg

ClearToSendMsg
Receiver

PacketMsg

ACKs

Figure 4.2: Entities and messages passed between them (speech source type)

Source
(data)
A
DataReqMsg NewDataMsg
ReqToSendMsg

Receiver

Figure 4.3: Entities and messages passed between them (data source type)

Channel Entity

The Channel entity waits for requests to send a message from another entities and
grants access if the channel is not in use. If access granted, no further request is
serviced until a packet has been taken in. Errors are added to the data and will then be
attached to the PacketMsg message before they are passed to the receiver's queue with
a delay factor specified by the channel delay. If, based on the channel model, a bit is
deemed to be subject to error, it is simply flipped (changed from 1 to 0 or vice versa).
The channel model that is used to make this decision is two-state DTMC. The
mechanism on how to do this was explained in Section 3.3. Any time a Sender and
Receiver entity want to communicate with the Channel entity, it must assert a
ReqToSendMsg message which the channel responds to with a ClearToSendMsg
message if it is free, and then waits for a packet only from the Sender entity who was

granted access.

Receiver Entity

The Receiver entity is the final destination for a packet after parsing through the

Channel entity. This 'enl-ity waits for packets to arrive from the Channel entity via

PacketMsg ge. If acknowledg t is enabled and the packet is error free, then
an acknowledgement is sent to the Channel entity. Otherwise, no further action is
taken. Other messages involved in communication between both entities are

ReqToSendMsg and ClearToSendMsg.

60

4.2.2 System Parameters

The eight system parameters, listed in Table 4.1, were varied to allow us to examine

the adaptive error control under various channel conditions.

none, Stop-and-Wait, Go Back N, CACK, SACK
Round Trip Time number of time units to allow a packet to be outstandings
Error Control Coding none, checksum, Reed Solomon, Viterbi Code
Packet type ATM packet
Max allowed delay number of si ion clock ticks a packet is allowed to remain buffered
Source Type Data, speech
Channel Model p ian, car speeds
Bit Error Rates Good, Bad states

Table 4.1: System Parameters
The system parameter and their possible values are elaborated as follows.
ARQ Type

The ARQ type may be set to one of five values as shown. The five values are none,
Stop-and-Wait, Go-Back-N and Cumulative Acknowledgement (CACK) and Selective
Acknowledgement (SACK). If no ackr:\owledgment is used, data flow is
unidirectional through the channel. The sender entity generates data and places it in
the channel entity as quickly as it can. It is constrained only by the data rate of the
channel entity and of the source entity until it has no more data to send. The receiver
entity accepts the data at this rate and stores it to an output file, possibly after
decoding for error correction. Alternatively, the raw data may be stored to a file
directly if no error correction coding was requested. In any case, the sender has no

knowledge of the outcome of the transmission.

61

The available ARQ schemes are essentially those described in the literature (Lin, 1983)
and will not be described in detail here. When one of these ARQ schemes is used, the
simulation limits the send buffer to eight packets, and in the case of SACK, the receive
buffer to the same amount. In all cases, the acknowledgment packet consists of four
bytes. The first two bytes are a sequence number related to the packet being ACKed,
while the last byte is a checksum to guard against error. The third byte is used only for
the SACK scheme, where it is necessary to provide the sender with information about
any packets which have arrived early. Each bit of this byte corresponds to one of these
packets, referenced starting with the last one received. So, this format is use to prevent
the packet loss and to organize the entire packet in both sender and receiver entity. In
the case of packet loss occurred, then the acknowledgement packet will send the

information to Sender to retransmit the loss packet again.

Error Control Coding

The choice of error control coding is another factor which affect the results in the
simulation. As is shown in Table 4.1, there are four options. If no coding is used, the
data is simply delivered to a file regardless of bit errors. Alternately, we may employ a
simple error detection scheme to determine packets which are in error. Taking a step
further, we may use an error correcting code such as a block code or a convolutional
code. For the block code, we chose a Reed-Solomon whose symbol size and block
length vary depending on the packet size. The convolutional code is decoded with a
rate % hard decision Viterbi decoder and the outcome of this ‘maximum likelihood’
decision is verified with a checksum. This particular code is independent of the packet

type since it codes a continuous stream of data.

In all cases, the packet header contains an additional checksum whose failure results in
a lost packet irrespective of the outcome of the other codes. It is assumed that if a
packet header is not reliable, nothing can be done with the data. At the very least, the
packet number contained in the header is unreliable, and most of the ARQ schemes

rely on this information to effect their algorithms.

Cyclic Redundancy Code

The Cyclic Redundancy Code (CRC) is a very powerful but easily implemented
technique to obtain data reliability. The CRC technique is used to protect blocks of
data called Frames. Using this technique, the transmitter appends an extra n-bit
sequence to every frame called Frame Check Sequence (FCS). The FCS holds
redundant information about the frame that helps the transmitter detect errors in the
frame. The CRC is one of the most used techniques for error detection in data

communications.

Retransmission Policy

The retransmission policy in the experiment;is to send the oldest packet not yet
acknowledged or known to be in transit. When a packet is sent, it is marked in transit
until it is either acknowledged, at which time it is replaced in the buffer by new data,
or until it times out, as per the Round Trip Time (RTT). Each packet is effectively
checked continuously for the expiration of its RTT, after which time it is marked for

retransmission.

Packet Size

This option allows for the segmentation of source data into arbitrarily sized blocks. In
any case, the data fed from the source is fragmented according to the information size
provided when using this switch. The packet size dictates the largest atomic unit
which is to have error control coding applied to it, and which is to then pass through

the channel.

When encoding with Reed-Solomon, this option is also used to specify the parameters
of the block coding, which is necessarily related to frame size. In particular, the code
rate, as described in the previous section, is fixed by naming the values for the symbol

size, block size, and amount of redundancy data, along with the frame size.

Delay Time

For real time applications, a packet which has exceeded a certain specified age limit is
no longer useful to the application. Therefore, the user may specify that packets which
have aged beyond a certain point, as per the maximum allowed delay, be dropped at
the sender. Specifying zero for this parameter leaves the delay unbounded which may
be useful to for example a file transfer operation, where delay is not critical.

4.23 Experiment Design

In this section, we illustrate more details about entire simulator program. The first job
of the simulation is to read data from an input file and then passing it to the sender
entity. An input file is provided for various error control strategies and others
parameter. The content of the input file has been explained in the previous section (See

Section 4.2.1). This input file can be read by a driver entity. In order to model different

64

kinds of sources, the input file contains two type of data source; a speech and data
type source. For data source type, the Sender entity is required to request for the data
first and then followed by feeding from the Source entity. For speech source type, the
data was fed directly to the sender without requesting it first. The difference is because
we want to know the performance of both these source types in term of normal and
multimedia data under given channel condition. This situation is depicted in Figure

4.4.

Source

Source

(Data) (Speech)

Request data New data New data

Sender Sender

Figure 4.4: The difference between Data and Speech transmission

Next, the sender must segment the data and form the packet. In our experiment, we
only test ATM packet, type. Data is simply broken into chunks of a certain size (the
segment size). This option allows for the segmentation of source data into arbitrarily
sized blocks. In any case, the data fed from the source is fragmented according to the
information size provided when using this switch. The packet size dictates the largest
atomic unit which is to have error control coding applied to it, and which is to then
pass through the channel. The Sender entity then requests for a Channel entity and

sends a packet when the Channel is granted. If acknowledgement is activated, the

65

Sender entity must wait for an acknowledgement before proceeding. If after a timeout,
no acknowledgement has arrived, a retransmission is performed. The Sender entity will
also automatically remove packets which no longer meet the delay constraint. The
following source code shows how to determine the packet time out.

if ((status[i]==SENT) && (now-sent_time[i] > rtt)) {
status[i] = FILLED; }

Before the Sender entity passes the packet to the Channel entity, it must assert a
ReqToSendMsg message which the channel respond to with a ClearToSendMsg message
if it is not in use, and then waits for a packet only from the sender who was granted
access. At the same time, no further request is serviced until a packet has been taken
in. After receiving the packets from the sender, the channel then performs bit errors
injection to the data according to the channel model used in this simulation. It also
means, the simulator examines each packet one bit at a time. On each bit, it decides
whether to apply an error with a probability that depends on the current state, and
further decides whether or not to change state, according to the transition
probabilities. The command below shows the message passed between both the sender
and channel entities. It also shows that, the channel is only ready to receive a new
packet if it is in free.

receive (ReqToSendMsg rts) {
send ClearToSendMsg to rts.sender;
receive (PacketMsg pkt) {

After a suitable delay corresponding to the delay incurred in the radio hardware, in
our simulations we fixed at 0.5 ms, each packet is then passed to the receiver’s queue

where it is decoded and handed to the sink which may or may not generate transport

66

layer acknowledgments. In this case, if packet has a delay more than 0.5 ms then it will
assumed to be drops. Based on Lettieri (1997), a delay of more than 0.5ms would result
in a two-way interactive speech becoming blurred. The following command shows
how the packet was transmitted from channel to the destination, but ensures that the

receiver does not ‘see’ the packet until after the channel delay.

send PacketMsg (self, temp.rxid, temp.txid, temp.data, err, temp.size, temp.gen_time} to

temp.rxid after channel_delay;

Upon receiving a packet from the channel, the decoding process is performed on the
packet. If any error is detected after error checking is performed, a suitable error
control coding is applied. The error can be detected from the PacketMsg message which
is received from the channel entity. The error control coding options that may be
applied are Checksum, Viterbi code and Reed-Solomon code. Otherwise, we assume
that it is a good packet. The receiver is also required to request for a channel before
sending an acknowledgement through the channel back to the sender. However, the

type of acknowledgment depends on whether ARQ was called for at the beginning of

the session.
send ReqToSendMsg {self} to temp.ch 1;
receive (ClearToSendMsg cts) {
If there is no more power to transmits data to the destination, then the simulation

terminates and statistics are produced for the user. In another word, the selection of
error control scheme and the amount of data to be sent are depending on current

available power. The among information generated are energy consumed by both

67

sender and receiver, maximum and average delay seen by the packets, amount of data

dropped due to excessive delay and residual BER in the output data.

Table 4.1 lists a sample of the more important user selectable parameters and their
possible values. This way, statistics are collected for different error control schemes,
including different FEC and ARQ types as well as all the possible hybrids for a variety

of source types, frame sizes, and so on.

43 Assumptions

It is necessary for us to make several assumptions about the simulation environment
before we get the result of the simulation just described. First, since the channel model
explained previously is used to represent the wireless link, the selection of a number of
parameters is required. In particular, we choose to fix the Bad and Good states BER at
0.5 and 0.00001 respectively. Bad state BER = 0.5 simply means that when the channel
is in the bad state, we have a 50-50 chance of a bit being in error. So for each bit that
goes by in this state, half of them are flipped. Good state BER of 0.00001, means that in
the good state, 1 out of 10,000 bits will be in error. The data rate of the channel is taken
as 625 kbps for all simulations. This data rate was chosen because it was based on a
real world popular wireless LAN card available (Eckhardt, 1998). Furthermore, in this
experiment we just focus on small area of wireless network and this data rate is

sufficient to simulate our algorithms in wireless LAN.

Second, a perfect CSMA/CA MAC layer is assumed with the sender and the receiver

the only nodes on the link. In other words, the sender and receiver have access to the

channel at will and compete only with each other for that channel. Furthermore, if one
unit has the channel, the other will wait until the first is done before attempting to
transmit. Accordingly, it is assumed that the radio is put to sleep when neither
receiving nor transmitting, and that the switch from any one mode to another requires
4 ms. Lastly, the user may specify between two different sets of transition
probabilities. In particular, the user may specify one of either of the channel presented

in Chapter 3: that seen from a moving car, or that seen at pedestrian speeds.

44 Compilation and Execution Environment

In this experiment, we use Windows version of PARSEC compiler which is now
available for use with Microsoft Visual C++. The compilation process is not much
different from standard compilation of C programs since this simulator is written

merely in C language.

if

selbiF

oEEs88s

Loc
Qs
Qo
Qr
G
Qo
X
am
Qn
Qo
Qo
Qw
@

| o[com ' | o] Y| @ || 8

Figure 4.5: Compilation process and generation of executable file

69

The compilation of a PARSEC program consists of two phase process. In the first
phase, the codes are compiled for all its PARSEC constructs. If this phase is
successfully compiled without any syntax error, the compilation enters the second
phase, which is the compilation of the C language constructs. Upon completion of the
second phase, an executable program file is generated by the compiler as shown in the

above figure (Figure 4.5).

The various results of the simulation performed are presented in the next chapter,

while we save several conclude for the last chapter.

70

3. Speech transmission at pedestrian speed

4. Speech transmission at car speed

The algorithms were tested under each of these network scenarios for two call arrival

pattern, which are normal call arrival pattern and fluctuating call arrival pattern.

5.1.3 Testing Output Parameters

Before we proceed to the results of the tests, there are several output parameters, which
are necessary to be produced for each test. The parameters and information are;

a. Number of packets dropped / lost

b. Numbers of packets that arrive at the destination

c. The percentage of packet dropped

d. Simulation time

e. The message passing among the entities

These values are accumulated and printed at the end of the simulation. The duration time

for each test depends on the FEC scheme and sotrce of data transmission type they used.

An example of simulationi system interface is shown in Figure 5.2.

73

5.1 Testing

51.1 Description of the Simulation Scenario

In the development and testing of this simulation implementation, the network scenario
below is used.

Error injected
depends on channel

Packet

Sender Receiver

Figure 5.1 Network Scenario for the Simulation

For this project, the simulation was built and compiled using the windows-based version
of PARSEC compiler. We used the Microsoft Windows 2000 Professional as the operating

system for compiling and executing the simulation.

512 Types of Test

All the three algorithms proposed in Chapter 3 were evaluated under different traffic
environments and algorithm parameter settings. The algorithms was tested for four
different network scenarios as follows:

1. Data transmission at pedestrian speed

2. Data transmission at car speed

72

