Table of Contents

Abstract \hspace{1cm} ii

Acknowledgement \hspace{1cm} iii

Table of Contents \hspace{1cm} iv

List of Figures \hspace{1cm} ix

List of Tables \hspace{1cm} xii

List of Acronyms \hspace{1cm} xiv

1. Introduction \hspace{1cm} 2
 1.1. Project background \hspace{1cm} 2
 1.2. Objective \hspace{1cm} 7
 1.3. Scope \hspace{1cm} 8
 1.4. Motivation \hspace{1cm} 9
 1.5. Organization of chapters \hspace{1cm} 9

2. Literature review \hspace{1cm} 11
 2.1. Data compression \hspace{1cm} 11
 2.2. Image compression \hspace{1cm} 12
 2.3. Image types \hspace{1cm} 14
 2.4. Redundancy \hspace{1cm} 15
 2.5. Information theory \hspace{1cm} 16
 2.6. A general image compression model \hspace{1cm} 18
 2.7. Compression methods \hspace{1cm} 19
 2.7.1. Lossless compression \hspace{1cm} 19
 2.7.1.1. Run-length techniques \hspace{1cm} 20
 2.7.1.2. Statistical techniques \hspace{1cm} 21
 2.7.1.3. Dictionary techniques \hspace{1cm} 24
 2.7.1.4. Lossless predictive techniques \hspace{1cm} 24
2.7.2. Lossy compression 25

2.8. Image compression standards 26

2.9. Compressing road map images 27

3. Methodology 34

3.1. Arithmetic coding concept 34

3.1.1. Tag generation process 34

3.1.2. Decoding 38

3.2. Integer implementation 39

3.2.1. Renormalization and incremental transmission 40

3.2.2. Decoding 42

3.3. Improved implementation 43

3.3.1. Improvements 44

3.3.2. Restrictions 44

3.3.3. Binary arithmetic coder 48

3.4. Modeling 50

3.5. Context-based statistics modeling 53

3.5.1. Neighbourhood template 54

3.6. Bitplane coding 57

3.6.1. Bitplane reduction 58

3.6.2. Reflected Gray coding 60

3.7. Prediction by Partial Matching (PPM) 62

3.7.1. Maximum order 63

3.7.2. Escape probability 63

3.7.3. Exclusion principle 64

3.7.4. Update exclusion 65

3.7.5. Frequency count scaling 65
3.7.6. Neighbourhood template 66
3.8. Combined method of bitplane coding and PPM 66
3.9. Test images 67
3.10. Implementation environment 69

4. Implementation 71

4.1. General structure 71
4.2. Bitplane coding 75

4.2.1. Compression program 75

4.2.1.1. Front end 75

4.2.1.1.1. Bitplane reduction 76
4.2.1.1.2. Bitplane splitting 78
4.2.1.2. File-level encoder 79

4.2.1.2.1. File header 80
4.2.1.2.2. Initialization 81
4.2.1.2.3. Creation and initialization of the models 81
4.2.1.2.4. Finding the context 83
4.2.1.2.5. Encoding each symbol 84
4.2.1.2.6. Termination 85
4.2.1.3. Symbol-level encoder 85

4.2.2. Decompression program 86

4.2.2.1. Front end 87

4.2.2.1.1. Bitplane merging 88
4.2.2.1.2. Inverse of bitplane reduction 89
4.2.2.1.3. File comparison 89
4.2.2.2. File-level decoder 89

4.2.2.2.1. Initialization 91
4.2.2.2.2. Decoding each symbol 91

4.2.2.3. Symbol-level decoder 92

4.3. Prediction by Partial Matching (PPM) 93

4.3.1. Compression program 93

4.3.1.1. Front end 93

4.3.1.2. File-level encoder 94

4.3.1.2.1. Creation and initialization of the models 95

4.3.1.2.2. Finding the context 98

4.3.1.2.3. Encoding each symbol 99

4.3.1.2.4. Managing the model 102

4.3.1.3. Symbol-level encoder 104

4.3.1.3.1. Order -1 encoder 104

4.3.1.3.2. Order 0 and above encoder 106

4.3.2. Decompression program 110

4.3.2.1. Front end 110

4.3.2.2. File-level decoder 110

4.3.2.2.1. Decoding each symbol 111

4.3.2.3. Symbol-level decoder 112

4.3.2.3.1. Order -1 decoder 113

4.3.2.3.2. Order 0 and above decoder 115

4.4. Combined method of bitplane coding and PPM 118

4.4.1. Compression program 118

4.4.1.1. Front end 118

4.4.1.2. File-level encoder 119

4.4.2. Decompression program 120

4.4.2.1. Front end 120
5. Results and discussion

5.1. Bitplane coding

5.1.1. Conclusion

5.2. Prediction by Partial Matching (PPM)

5.2.1. Update exclusion

5.2.2. Neighbourhood template

5.2.3. Escape method

5.2.4. Maximum order

5.2.5. Frequency count scaling

5.2.6. Best settings

5.2.7. Conclusion

5.3. Combined method of bitplane coding and PPM

5.4. Overall comparison of the methods

5.4.1. Compression size

5.4.2. Memory requirements

5.4.3. Execution time

5.5. Summary

6. Conclusion

6.1. Summary of work accomplished and results

6.2. Future work

Appendix A: Road map images

Appendix B: RAW and JASC-PAL file formats

Appendix C: Calculation of GIF file’s image data size

Appendix D: Memory requirement in PPM

References
List of Figures

Figure 1.1: Example of sources for spatial data 4
Figure 1.2: Examples of spatial data 5
Figure 2.1: An example of an image and a pixel 13
Figure 2.2: A general image compression model for 19
Figure 2.3: A taxonomy of image compression methods 20
Figure 2.4: An example of a road map 27
Figure 2.5: Degradation caused by lossy compression 29
Figure 2.6: Difference between palette and bitmapped format. 30
Figure 3.1: Example of subdividing intervals in arithmetic coding 36
Figure 3.2: Pseudocode for arithmetic encoder of Moffat et al. 46
Figure 3.3: Pseudocode for arithmetic decoder of Moffat et al. 47
Figure 3.4: Pseudocode of Moffat et al.'s binary arithmetic coder 49
Figure 3.5: Incorporating arithmetic coding into a compression system 50
Figure 3.6: An example of a neighbourhood template 55
Figure 3.7: 1-norm and 2-norm neighbourhood templates 56
Figure 3.8: Neighbourhood templates used by JBIG2 standard 56
Figure 3.9: Bitplane decomposition 57
Figure 3.10: An example of the bitplane reduction process 60
Figure 3.11: Converting between binary code and Gray code 61
Figure 3.12: An example of splitting an image into different planes 67
Figure 3.13: Establishing the maps corpus 68
Figure 4.1: General structure of the compression program 72
Figure 4.2: General structure of the decompression program 73
Figure 4.3: Front end of compression program for bitplane coding 75
Figure 4.4: Pseudocode for bitplane reduction process 77
Figure 4.5: Pseudocode for bitplane splitting

Figure 4.6: File-level encoder for bitplane coding

Figure 4.7: Example of a code snippet used to find the context

Figure 4.8: Pseudocode for encoding each symbol

Figure 4.9: Symbol-level encoder for bitplane coding

Figure 4.10: Pseudocode for model management

Figure 4.11: Front end of the decompression program for bitplane coding

Figure 4.12: Pseudocode for bitplane merging and inverse of bit reduction

Figure 4.13: Pseudocode for file comparison

Figure 4.14: File-level decoder for bitplane coding

Figure 4.15: Pseudocode for decoding each symbol

Figure 4.16: Symbol-level decoder for bitplane coding

Figure 4.17: Front end of compression program for PPM

Figure 4.18: Example of how the probability tables are stored

Figure 4.19: Pseudocode for initializing a model

Figure 4.20: Pseudocode for filling in the neighbour[] array

Figure 4.21: Pseudocode for encoding a symbol using PPM

Figure 4.22: Pseudocode for updating a model

Figure 4.23: Pseudocode for order -1 encoder

Figure 4.24: Pseudocode for encoding an escape symbol

Figure 4.25: Pseudocode for encoding a normal symbol

Figure 4.26: Front end of the decompression program for PPM

Figure 4.27: Decoding each symbol in PPM

Figure 4.28: Pseudocode for order -1 decoder

Figure 4.29: Pseudocode for order 0 and above decoder in method A

Figure 4.30: Pseudocode for order 0 and above decoder in method B
Figure 4.31: Pseudocode for order 0 and above decoder in method C and D

Figure 4.32: Front end of compression program for the combined method

Figure 4.33: Pseudocode for plane splitting process

Figure 4.34: File-level encoder for the combined method

Figure 4.35: Front end of decompression program for the combined method

Figure 4.36: Pseudocode for plane merging process

Figure 4.37: File-level decoder for the combined method

Figure 5.1: Plot of file size versus number of context bits used

Figure 5.2: Plot of the total file size against the maximum order

Figure 5.3: Plot of the total file size against the scaling value

Figure 5.4: Plot of compressed file size of each file

Figure 5.5: Compression time for each file

Figure 5.6: Decompression time for each file

Figure C.1: Structure of a GIF file
List of Tables

Table 3.1: Subinterval division process
Table 3.2: Probability table
Table 3.3: Subinterval limits calculation
Table 3.4: Decoding process
Table 3.5: Renormalization for floating point arithmetic
Table 3.6: Renormalization for integer arithmetic
Table 3.7: Minimal bits per pixel required
Table 3.8: Reflected Gray codes for 0 to 15
Table 3.9: Escape and symbol probabilities
Table 3.10: Test image files information
Table 4.1: Probability table for order -1 model
Table 4.2: Finding l, h and t for escape symbol in method A, B, C and D
Table 4.3: Finding l, h and t for a normal symbol in method A, B, C and D
Table 5.1: Results for bitplane coding (without reflected Gray coding)
Table 5.2: Results for bitplane coding (with reflected Gray coding)
Table 5.3: Summary of results for JBIG2 templates
Table 5.4: Results for PPM, to compare single and full counting
Table 5.5: Results for PPM, to compare 1-norm and 2-norm templates
Table 5.6: Results for PPM, to compare escape methods
Table 5.7: Results for PPM, to compare various maximum order values
Table 5.8: Results for PPM, to compare various frequency count scaling values
Table 5.9: Results for PPM using best settings
Table 5.10: Best results for the various methods
Table 5.11: Calculated minimum memory requirements for the various methods
Table 5.12: Compression and decompression time (in seconds)
Table 6.1: Comparison of total file sizes (in bytes)
Table B.1: JASC-PAL palette file format
Table C.1: Test image GIF file size
Table D.1: Memory requirement for probability tables in PPM
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Actual word</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM</td>
<td>Asynchronous Transfer Mode</td>
</tr>
<tr>
<td>GIF</td>
<td>Graphics Interchange Format</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographical Information System</td>
</tr>
<tr>
<td>JBIG</td>
<td>Joint Bi-level Image Group</td>
</tr>
<tr>
<td>JPEG</td>
<td>Joint Photographic Experts Group</td>
</tr>
<tr>
<td>LPS</td>
<td>less probable symbol</td>
</tr>
<tr>
<td>LSB</td>
<td>least significant bit</td>
</tr>
<tr>
<td>MPS</td>
<td>more probable symbol</td>
</tr>
<tr>
<td>MSB</td>
<td>most significant bit</td>
</tr>
<tr>
<td>PPM</td>
<td>Prediction by Partial Matching</td>
</tr>
<tr>
<td>TIFF</td>
<td>Tagged Image File Format</td>
</tr>
</tbody>
</table>