Chapter 3:

Methodology

3. Methodology

I'his chapter surveys and explains how the implemented compression methods work and
addresses issues related to the implementation. The concept of arithmetic coding is
introduced in Section 3.1. A practical implementation of arithmetic coding is described
in Section 3.2. An implementation that improves upon this, and which is used in this
disseriation. is described in Section 3.3. Arithmetic coding requires the use of medeling,
as explained in Section 3.4. Section 3.5 details the use of context-based statistics
modeling. Two methods involving context modeling which are used in this dissertation,
bitplane coding and PPM, are described in Section 3.6 and 3.7 respectively. A method
combining bitplane coding and PPM is outlined in Section 3.8. Section 3.9 explains

how the images that are used for testing the impl ions are obtained. Finally, the

P

implementation environment is described in Section 3.10.

3.1 Arithmetic coding concept

In arithmetic coding, a rag that uniquely represents the entire sequence to be encoded
is generated. This is in contrast with assigning codes to the individual symbols, for
example in Huffman coding. The tag distinguishes the sequence from all other possible
sequences, so that the sequence can be decoded. The following description was adapted

from Sayood (2000) and Witten er al. (1987).

REN| Tag generation process

To show conceptually how it works. the interval of real numbers [0.1) can be used as
the set which contains the possible tags. [0.1) denotes all values of x with 1 < x < 0.

Consider a sequence of symbols comprising the source data or message to be

compressed. Associated with each symbol is a probability of its occurrence (how the

probability is found would depend on the modeling portion).

The procedure of finding the tag works as follows:
1. Start with a current interval [L,H) initialized to the value [0.1). [and H are variables

representing the low and high limits of the interval.

)

Repeat, for each symbol in the message sequence:

i. subdivide the current interval into subintervals. one for representing each
possible symbol. The size of the subinterval is proportional to the
probability of the symbol

ii. the subinterval for the symbol that occurred is selected to be the new
current interval.

3. When the entire sequence has been processed. the output should be a number that

uniquely identifies the current interval.

Any number in the final interval can be used as the tag. since the appearance of each
new symbol restricts the tag to a subinterval that is disjoint from any other interval that

may have been generated.

Example: Consider the alphabet S = {s).55.53} and the sequence to be encoded is siss3 .
Their probabilities are given as P(s;) = 0.7. P(s2) = 0.2 and P(s:) = 0.1. The interval is
divided among the three symbols by assigning a subinterval proportional in size to its
probability, as shown in Figure 3.1. At the start. the subintervals corresponding to sz, sa.
and s; respectively are [0.0.1), [0.1.0.3) and [0.3.1.0). Encoding the sequence then
proceeds as shown in Table 3.1. The final interval is [0.51. 0.559). Any number in this

final interval can be taken to represent the sequence s;s;s3 uniquely. for example 0.55.

encode

S

encode

Si

encode

S35

L H
0 0.1 03 1.0
1 1

S 3 Si

v

0.3 037 0.51 1.0

L 1 1 J
s o8 si

0.51 0.559 0.657 1.0

L 1 1)

N s

[

.

o Tl

Vo Tl

P T

i -

v s

0.51 0.559

L 1 1 J
50)

Figure 3.1: Example of subdividing intervals in arithmetic coding

Table 3.1: Subinterval division process

current encode subintervals
interval symbol s3 $2 s3
10.1.0) s [0,0.1) [0.1,03) | 03,1.0)
[0.3,1.0) sy [0.3,0.37) [0.37.0.51) | [0.51,1.0)
[0511.0)| s [0.51,0.559) | [0.559.0.657) | [0.657.1.0)
| [0.51.0.559)

In practice, it is sufficient to calculate the lower and upper limits. L and H. of the
subinterval containing the symbol to be encoded. When encoding the symbol s,. L and
H can be updated using the following equations:
L’ =L+ (H-L)xFy(n) 3.1)
H' =L+ (H-L)xFy(n-1) 3.2)

where, L. and H’ are the new lower and upper limit respectively. F(n) is given by:

Fin) = 1-3 P(si) forn>0 (3.3)

Fy(n) forn=0 (3.4)

where P(s;) denotes the probability of symbol s, occuring.

Example: Table 3.2 shows the probability table storing the values of P(s;) and Fy(n) for

the previous example. Table 3.3 shows how the subintervals are found.

Table 3.2: Probability table

n i 1 P(s) Fy(n)

0 - - 1.0

1 s 0.7 ' 0.3

2 52 02 ; 0.1

3 S3 0.1 “’ 0

Table 3.3: Subinterval limits calculation

current limits | encode new limits

L H | symbol L T H
0 1.0 s) =0+ (1-0x03 =03 =0+ 0-0x1=1.0
03 |10 s =03+ (1-0.3)x03 = 0.51 3+ (1:0.3)x1 =1.0

051 | 1.0 s =051+ (1-:051)x0 = 051 |
051 |0.559)

51+(1-0.51)x0.1 =0.559

3.1.2 Decoding

The message can be decoded from the tag using the following steps:
1. Initialize the lower and upper limits, L=0and H= 1

2. Find the value rarget = (tz;g - L)/(H-L)

3. Find the value of n for which Fy(n) < target < Fy(n-1)

4. The decoded symbol is s,

5. Find the new limits L’ and H’ using the equations 3.1 and 3.2

6. Repeat steps 2-5 until the entire message has been decoded

To know when decoding is complete and should be stopped, an end-of-message symbol
can be sent by the encoder to indicate the end of the message. Alternatively, the decoder
is informed beforehand the length of the message and stops decoding when enough

number of symbols have been decoded.

Example: From the previous example, let the tag representing the sequence be 0.51. The

decoding process is shown in Table 3.4.

Table 3.4: Decoding process

current target new current interval decoded
interval symbol
e H L H
0 1.0 [=(051-0)/(1-0) =0+(1-0)x0.3 =0+ (1-0)x1 s
=051 =03 1.0
03 1.0 [=(0.51-0.3)/(1-0.3) =03+ (1-03)x03 | =03+ (1-0.3)x1 s
03 =051 =10
0.51 10 | =(051-0.51)/(1-0.51) 0.51+(1-0.51)x0 0SH(I05DX0T |53 |
0 =051 0.559
051 0559 -

3.2 Integer implementation

A practical impl ion for a puter has to use integer arithmetic instead of

floating-point arithmetic. The following implementation is due to Witten er al. (1987).

Let b be the number of bits used to represent an integer number. There are 2° possible
integer numbers, from 0 to 2-1. The initial interval [0.1) can thus be mapped to the
interval [0,2"). For example. if b=16. then the range used for integer implementation is

[0,65536).

Let freq(s;) be the number of times the symbol s, has occurred in a sequence of length
total_count. P(s) can thus be estimated by freq(s,) total_count. Equation 3.3 then

becomes:

n
Fyn) = 1- [.Z: lfreq(s.))/ total_count

= cum freq(n)/ total _count (3.5)

where cum_freq(n) = total_count -y freq(s,)
R
For the integer implementation, equation 3.1 and 3.2 becomes:

L’=1L+ R X cum_freq(n) (3.6)

total _count

H = L+ R x cum fregm-1) -1 (3.7

total _count

where R=H ~L + 1.and | x| is the largest integer less than or equal to x.

3.2.1 Renormalization and incr tr

For each symbol processed during encoding, the resulting interval becomes smaller and
smaller. It takes more bits to represent the tag for a small interval compared to a larger
interval. To implen;cnt the encoding process in a computer, the precision required to
represent an interval becomes higher as the length of the sequence increases. As a
computer will have limited precision (depending on the number of bits allocated to
represent a number), the values of L and H are bound to become closer and converge
when the interval becomes very small. Information about the sequence will be lost from
the point in which the two values converged. To avoid this, the interval needs to be

renormalized back to the original range.

First, consider the floating point arithmetic implementation. When interval becomes
smaller, there are three possibilities:

i. the interval is entirely confined to the lower half of the interval, [0,0.5)

ii. the interval is entirely confined to the upper half of the interval, [0.5,1)

iii.the interval straddles the midpoint of the interval, [0.25, 0.75)

To renormalize, the interval is remapped into the [0, 1) interval as shown in Table 3.5.

Table 3.5: Renormalization for floating point arith
condition mapping equation
If H <0.5 Ei: [0,0.5)—[0.1) Ei(x) =2x
If L >05 E2: [0.5,1)—[0.1) Ea(x) = 2(x-0.5)
If H<0.75 and
E3:[0.25.0.75)— [0, 1) | Ex(x) = 2(x-0.25)
L>0.25

For the interval [0,0.5). the most significant bit of the binary representation of all
numbers in that interval is 0. For the interval [0.5.1). the most significant bit of the
binary representation of all numbers in that interval is 1. Therefore. once the interval is
restricted to either the lower or upper half. the most significant bit of the tag is fully
determined. It can be shifted out and transmitted to the decoder, thus making

incremental transmission of the encoded bitstream possible.

The mapping E3 is required because 1. and H can become close to each other without
triggering the mappings E1 and E2. This happens when L and H moves towards 0.5, but

L remains in the lower half while H remains in the upper half.

In the integer implementation. the initial range is [0, 2°). If b is the number of bits
representing the integer number. the binary representation for the initial range is:
L= 0= (000...0)
—

b zeroes
H=2"1=(111...1)
"

b ones

The mapping for integer implementation is given in Table 3.6. The mapping enables
incremental transmission. The E, and E> mapping operation is equivalent to shifting the
integer numbers one bit to the left. thus shifting out the MSB (0 and 1 respectively for

Ejand E;). The bit shifted into the LSB is 0 and 1 respectively for I.and H.

For E3 mapping. the following is done. The integer numbers are also shifted one bit to
the left, shifting out the MSB. However. instead of immediately transmitting a 1 or 0,
the number of times that E3 mappings are done consecutively is kept track. The first

time an E1 or E2 mapping is performed after the I3 mappings. the same number of bits

is output, with a value that is complementary to the bit output by EI or E2. For
example, if three E3 mappings are done, followed by an El mapping, then the bits
output are 0111, If it was an E2 mapping that followed the E3 mappings, then the bits

output are 1000.

Table 3.6: Renormalization for integer arith
condition mapping equation
If H <Half Ey: [0, Half)— [0,2°) Ei(x) = 2x
If L >Half Ex: [Half, 2°)— [0,2%) Ex(x) = 2(x-Haly)
If H<Third qtr and | Es: [First_qtr, Third_qtr) | Es(x) = 2(x-First_qtr)
L >First_qtr —1[0,2%)
*Where:
Half =202 =2

First_qtr =24 =22
Third_gtr = 3x2"/4 = 3x2*?

3.2.2 Decoding

The corresponding decoder for the integer implementation above is as follows. The
sequence can be decoded from the tag using the following steps:

1. [L, H) is initialized to [0,2°) as in the encoder. A number, V. is used is to receive
the bitstream. Bits that have been decoded are shifted out of the left-most end
(MSB) and newly received bits are shifted into the right-most end (LSB).

2. An integer number, farget, is found. The number lies in the range [cum_freq(n).
cum_freq(n-1)) that was used at the corresponding step at the encoder.

target = [(V-L+ 1) x total count -1 (3.8)
R

3. From the value of rarget. the symbol corresponding to it is found i.e. the symbol s,

for which cum freq(n) < target < cum Jreg(n-1)

4. Find the new current interval I." and H" using the equations 3.6 and 3.7.
5. Do renormalization if required. using the mapping described in the previous
section, shifting in new bits into V. Repeat renormalization until it is not required.

6. Continue 2-5 until the entire sequence has been decoded.

3.3 Improved implementation

In the implementation above by Witien er a/.(1987). the state of the coder is recorded by
the value L and H. to denote the interval’s range [L.H). The interval range R = L-H+1
is calculated at each step. Moffat er al. (1998) proposed improvements to the
implementation by rearranging the calculation of the interval range. A slightly different
way was used to record the coder’s interval limits by using L and R, instead of L and H.

Thus the interval range is given by [L.L+R). L and R are initially 0 and 2*"' respectively.

To find the new current interval. " and R is given by:

L+ Rxcum freqn) 3.9
T ol coumt
R X cum_freq(n-1) R x cum_freq(n) (3.10)
total _count total _count
Define
R x cum freqm) (3.11)
I()Iul count
Then,

+1 (3.12)

Rx cum_freqn-1 (3.13)
total count

3.3.1 Improvements

Moffat et al. (1998) cites the following improvements:

1.

1.

The number of multiplications performed was reduced to one in the encoder and two
in tfie decoder. When the value of H is equal to rotal count, a further operation is
saved in both the encoder and decoder if the remainder of the range is allocated to
the last symbol in the alphabet. These savings result in faster execution of the
arithmetic coder.

The rearrangement of the multiplicative operations allowed larger frequency counts
to be manipulated. If fand b are the number of bits used respectively to represent the
frequency counts and the coder limits L and R, then the constraints of the maximum

frequency count is given by f< b-2, and total_count< /. For example, if b =32, then

/=30 can be used, allowing larger amount of symbols to be processed before

frequency count scaling (the reduction of frequency counts) is required. In contrast,

Witten et al.’s impl ion is cc ined by 2f +1 <b.

The decoder implementation was reorganized to allow a simpler decoder
renormalization loop, resulting in faster execution.

Implementation using add and shift operations instead of multiplication and division
became possible, thereby possibly increasing execution speed.

An extension for arithmetic coding of binary alphabets was also provided.

332 Restrictions

There are however several restrictions to be aware of when using the improved

arithmetic coder (Moffat et al., 1998):

The rearrangements in the arithmetic coder resulted in a slight loss of compression

effectiveness, but can be minimized by having the symbol with the largest

probability (the most probable symbol) maintained at the top of the probability
table. The alternative is 10 use a large value of b-f

2. For better compression. the value of f should be as small as possible. This however
would result in more frequent count scaling. Therefore, the tradeoff should be
considered.

3. If add and shift operations are used. the frequency counts need to be kept in partially
normalized form such that 2"'< (< 2",

4. Using add and shift operations may not result in much improvement to execution
time, depending on the machine architecture (how much faster add and shift is
compared to multiplication and division). On a Pentium Pro machine, it was found
that the add’shift implementation offered only slight improvement of execution

time.

The implementation of the compressors in this dissertation used the improved arithmetic
coder by Moftat er al. (1998). The implementation allows the choice of either the
add/shift or multiplication/division approach. The latter was chosen since restrictions
3.3.2(3) and 3.3.2(4) above complicates the implementation somewhat and compression
speed is a secondary issue anyway. The implementation can be modified later if tuning

for improved speed performance is required.

Figure 3.2 shows the pseudocode for the arithmetic encoder of Moffat et al.’s arithmetic
coding implementation. The functions start encode() and finish encode()

initialize and terminate the arithmetic encoder respectively. The function

encodes a symbol given /, h and 1, which denote cum_freq(n).

cum_freqn-1). and total _count respectively.

function start_encode ()

function arithmetic_encode(l, h, t)

r « R/t
L « Ltr*l
if (h<t)
R « r*(h-1)
else
R « R-r*l

/*renormalization*/
while (R < 27%)(

if (L+R < 2°7%)¢
output 0 once
output 1 g times
g « 0
}else({
if (L2 2%
output 1 once
output 0 g times

ge«~0
L « L-2°"!
Jelse(
g « g+l
L « L-2°7
}
}
L « 2*L
R « 2*R

function finish_encode()

bits « L

for (i =1 to b){
output (bits>>(b-i))AND 1,)
output the opposite bit g times
g« 0

Figure 3.2: Pseudocode for arithmeti der of Moffat er al.

Figure 3.3 shows the pseudocode for the arithmetic decoder of Moffat et al.’s arithmetic
coding implementation. The functions start_decode() and finish decode()
initialize and terminate the arithmetic decoder respectively. The function
deccas target) returns the target value, while arithmetic decode() updates

the decoder’s state.

The source code for the arithmetic coder was made readily available by the authors (at

hup:www cs. t/arith_coder/). The functions related to the arithmetic

coder were used in this dissertation.

function start_decode (1, h, t)

R« 2°7%
D~ 0
for (i=1 to b)
D « 2*D + next_bit

function decode_target (t)

r « R/t
target « minimum{t-1,D/r}
return target

function arithmetic_decode (1, h, t)

D ~ D-r*1
if (h<t)

R « r*(h-1)
else

R « R-r*1

/*renormalization*/
while (R € 2"7%)¢

R « 2*R

D — 2*D + next_bit

function finish_decode ()

/* does nothing */

Figure 3.3: Pseudocode for arithmetic decoder of Moffat ef al.

a7

333 Binary arithmetic coder

A binary arithmetic coder is used for the special case when the source data to be
encoded is made up of symbols from a binary alphabet i.e. having only two symbols, 0

and 1.

“he implementation by Moffat ef al. provides a binary arithmetic coder, which is a
madification of the multisymbol arithmetic coder given in the previous section. The
pseudocode is shown in Figure 3.4. A number of the components in the multisymbol
arithmetic coder were eliminated:

1. There is no need for a data structure to keep the statistics since cumulative

frequency counts are trivially available. Since the frequency counts of only two
symbols, 0 and 1, denoted by 0 and cl respectively, are kept, the total count is

found by adding them.

2. The term MPS (more probable symbol) is used to denote the symbol having a
probability of 0.5 or more. The other symbol is denoted as LPS (less probable
symbol). As mentioned in Section 3.3.2, the MPS should be maintained at the top
of the probability model. This was done by rearranging the code.

3. One multiplicative operation was eliminated in the encoder when LPS is

transmitted, and one multiplicative operation avoided in the decoder for the MPS *

and two for the LPS.

function binary_arithmetic_encode (cO, cl, b:t

if (c0 < c1){
LPS « 0
CcLPS « c0
}else(
LPS « 1
CLPS « cl
}
r « R/(cO+cl)
rLPS « r*cLPS

if (bit = LPS){
L ~ L+R-rLPS
R « rLPS
}else
R « R-rLPS

renormalize as in multisymbol arithmetic enccder

function binary_arithmetic_decode (c0, ci)

if (c0 < cl){
LPS « 0
CLPS « c0
}else(
LPS « 1
CLPS «~ cl
}
r « R/ (cO0+cl)
rLPS « r*cLPS

if D 2(R-rLPS) {
bit « LPS
D « D-(R-rLPS)
R «~ rLPS
Jelse{
bit « 1-LPS
R « R-rLPS
}
renormalize as in multisymbol arit
return bit

Figure 3.4: Pseudocode of Moffat ef al.’s binary arithmetic coder

3.4 Modeling

Figure 3.5 shows how the arithmetic coder is incorporated into a compression system
based on the general image compression model given in Figure 2.2 of Section 2.6. As

this dissertation uses lossless compression, the quantizer block is deleted.

(A)

symbol encoder

+ modification

i“‘__’ compressed

bitstream

symbol

"_’ probability
probability i

source mapper
data PP

(B) symbol decoder

model

bitstream

symbol
probability
A H
compressed ' inverse decompressed
coder
mapper data

Figure 3.5: Incorporating arithmetic coding into a compression system

The arithmetic coder is divided into two independent modules. the model and coder, as
advocated by Rissanen & Langdon (1981). The modei provides an estimate of the
symbols” probabilitics i.. it models the statistics of the data. The coder (as described in
the previous sections) encodes a symbol based on its probability. as provided by the

model, to generate a sequence of bits.

For a given model, arithmetic coding will give close to optimum compression (as
mentioned in Section 2.7). As suggested by Moffat ¢r al. (1998). the model can be
considered as the “intelligence™ of the compression system. whereas the coder is the
“engine room”. Improvements to the model will yvield improvement to the compression
effectiveness, in terms of reduced size of the compressed data. Improvements to the
coder are mainly concerned with the compression efficiency. that is. a reduction in time

and memory usage.

Because of this, the focus of this dissertation is on implementation of the model, rather
than the coder. As mentioned in the previous section. the coder uses a readily available

implementation of the improved arithmetic coder by Moffat er al. (1998).

There are three types of modeling (Langdon, 1981: Howard & Vitter. 1994):
1. Static or non-adaptive model

A predefined model is fixed and used for compressing all data sources. It is obtained
from measuring some sample data or making certain assumptions. This would work
well if the probability distribution of all the data exactly matches the fixed model. In
the case of images, this may not happen because different images may have different
probability distributions. For example. one image may have the colour red appear

most often, whereas in another image the colour blue appears most often.

2. Semi-adaptive model

Two passes are made over the data. In the first pass, statistics are collected to build
the exact model. In the second pass, the model is used to compress the data. The
model is sent along with the compressed data to the decoder. This incurs an
overhead, especially if the size of the model is large. Also, the whole data needs to

be known before compression can commence.
3. Adaptive model

The model is built on-the-fly while the data is compressed, based on the data already
seen by the coder. The system ‘learns’ the statistics of the data during the
compression process and can adapt to the probability distribution of different
images. Unlike the semi-adaptive model, there is no need to send the model to the
decoder because the decoder imitates the encoder when building up the model. It
also allows for incremental compression of the data without having to wait for the

rest of the data to be known.

It has also been shown that the static model can be arbitrarily bad, while, in general, an
adaptive model performs as well as the semi-adaptive model (Howard & Vitter, 1994).

Therefore, the adaptive model is used in this dissertation.

Figure 3.5 shows the role of the adaptive model in the compression system. The symbol
to be encoded is input to the coder. The symbol’s probability is obtained from the
model. After encoding the symbol, the model will be updated, thus building a model of
the data’s statistics. At the decoder, the compressed bitstream is decoded according to
the model. The decoder builds the model adaptively in exactly the same manner as the

encoder, thus ensuring decodability.

3.5 Context-based statistics modeling

One approach to modeling is to use the context in which the symbol to be encoded
appears in to determine its probability (Salomon. 2000: Langdon & Rissanen, 1981).
The context consists of symbols that have been encountered before the current symbol.
The order of the model refers to the number of previous symbols ¢ that makes up the
context. An order 0 model means that the probability of the symbol is independent of
any previous symbols. An order ¢ model means that the probability of the symbol

depends on ¢ previous symbols.

The following example shows intuitively how using context modeling can be effective.
Consider compression of an English language text. The letters ELEPHAN are seen
preceding the next letter to be encoded. Then. we can say almost for certain that the next
letter is T because ELEPHANT is the only valid word in the English language. There is
a very high probability that the next letter is T and the number of bits required to encode
the letter should be very small. The letter T has dependency on the previous letters, and
based on this dependency it is highly redundant (i.c. even without the letter T, we can

predict the word will be ELEPHANT).

This can be extended to the case of an image. An image has spatial dependencies
between pixels that can be exploited. The pixel 10 be encoded is expected to be
correlated with its neighbours. Therefore. the neighbouring pixels can be used to predict

the probability of the pixel.

The model is a probability distribution of the symbols. It keeps a list of symbols and
their corresponding probabilities. When encoding a symbol. its probability will be

supplied to the arithmetic coder.

In an actual impl ion, the fi

q 'y count of the symbol is kept instead. It is not
possible to find the ‘real’ probability since in reality the true statistical nature is an
enigma (Withers, 2001). The frequency count of the symbol is the number of times a
symbol has appeared. in that context. The frequency count is used as an estimate of the
symbol’s probability (using equation 3.5). In the adaptive model, the frequency count is

modified when a symbol is being encoded, thereby updating the model.

3.5.1 Neighbourhood template

For an image, the context is found based on a neighbourhood template. The
neighbourhood template consists of selected pixels in the vicinity of the pixel being
encoded. Let s be the size of the alphabet and ¢ the number of pixels forming the

template. The number of possible contexts is s°.

The values of the pixels can be interpreted as a distinct index value pointing to a
statistical model. Each model is a table (or some other form of data structures) that
stores the symbol probabilities. The order of the model is equal to the number of pixels

forming the template.

In practice, the neighbourhood pixels used must be causal pixels, that is, they have been
previously seen by the coder when encoding the current pixel. The reason is because
during decoding, only the pixels that have been decoded will be known to the decoder,

thus enabling to build the model exactly in step with the encoder.

Note that there are cases when the template or a portion of it lies outside the image. In

this case, a default value of 0 is used for the pixels that are outside the image boundary.

Figure 3.6 shows an example of a four-pixel neighbourhood template of a binary image.
In this case, the number of possibie contexts is 2* = 16. The pixel denoted X is the
current pixel being encoded. Four neighbouring pixels are chosen to form the template,
their values as shown. The index value can be interpreted as, for example, 1101, or 1310
(the ordering is not important as long as it is consistently obeyed). This is then used to

find the corresponding statistical model from a table.

template

1o 1]

1| X

ﬂ Statistical model

index

Figure 3.6: An example of a neighbourhood template

The selection of the pixels forming the reighbourhood template affect the accuracy of
the model, hence the compression performance (Ageenko et al., 2001). In this
dissertation, the following templates were used:

1. Standard 1-norm and 2-norm templates (Martins & Forchhammer, 1998)

2. Templates used by JBIG2 (JBIG committee. 1999)

Figure 3.7 shows the standard 1-norm and 2-norm templates, where X is the current
pixel. For example. a 12-bit 1-norm template is made up of the pixels marked 1 to 12.
Figure 3.8 shows the templates defined for use in the JBIG2 standard. In the JBIG2

standard, a template may have adaptive pixels whose locations are flexible. Here. the

adaptive pixels are placed at their nominal locations. Note that one of the 10-bit

template (C) is the same as that obtained from the 2-norm template.

12 [14]
11]6 [10]16] 12]10[6 [9 [11]
[15] 9 2af8]1a [16]8al2]3|7 15
(137]a]1]x [13]5 [1]x
(A) I-norm (B) 2-norm
12 |
1] 6 [10]
[o]s5][2]a]8]
(7131 x
(C) 12-bits 1-norm
Figure 3.7: 1-norm and 2-norm neighbourhood templates
(A) 16 bit (B) 13 bit
o |o |o |o ?o] o0 |o Jo |° I
[oloTo o oo o [o o]o o [o |o
[o Jo]o Jo [x [o To o [x
(C) 10 bit (D) 10bit
o lo |o o (o o o |o |o
o lo |o lrl ojo |o o |x
[o]o x

Figure 3.8: Neighbourhood templates used by JBIG2 standard

Two methods involving context-based statistics modeling are bitplane coding and

Prediction by Partial Matching (PPM). They will be described next.

3.6 Bitplane coding

Consider an image of the size Hxl}" where / and I denote the height and width of the
image respectively. Let p be the number of bits used to represent the image’s pixel
value. By selecting a single bit from the same position in the binary representation of
each pixel, an HxW image. called a bitplane. can be formed. It is a binary image
consisting of only the values 0 and 1. The original image can thus be decomposed into a

set of p HxW binary image.

As a convention. the bitplanes are numbered 0 through p-1. Bitplane 0 represents the
binary image formed by taking the most significant bit of each pixel. The next bitplane
represents the binary image formed by taking the next most significant bit of each pixel,
and so on, up to bitplane p-1 which represents the binary image formed by taking the
least significant bit of cach pixel. Figure 3.9 shows an example of the decomposition of

an 8 bits-per-pixel image into the 8 separate bitplanes.

bitplane 0
bitplane 1
— =
i
1
|
1 H
=l 1
0 :
H
10111110 \ '
H
1 |
. bitplane 7
1
1
0

Figure 3.9: Bitplane decomposition

A binary arithmetic coder is then used to compress each bitplane, i.e. each bitplane is
treated as a binary image. Context modeling is performed independently on each
bitplane to estimate the symbols’ probabilities using neighbourhood templates. The
following templates were investigated:

1. Standard 1-norm and 2-norm templates

2. Templates used by JBIG2, with the adaptive pixels at their nominal locations

For the standard 1-norm and 2-norm templates, the template size (i.e. the number of bits

forming the context) was varied to find the most effective compression.

Two additional factors affecting compression that were investigated are bitpiane

reduction and the use of reflected Gray codes.

3.6.1 Bitplane reduction

Bitplane reduction is a preprocessing step that can be used to improve the compression
of bitplane coding (Yoo ef al., 1998). In the raw data to be compressed, a pixel value
may be represented by more bits than actually required. For example, let’s take the case
of 8 bits used for each pixel, where up to 256 unique colours can be represented. The
value of the pixels may be anything in the range of [0,256). In the actual map image.

significantly less number of colours may be used, for example 20 colours.

Therefore, bitplane reduction ensures that only just enough number of bits is used to
represent the pixel values, regardless of how many bits are used in the original raw data.
so that improved compression can be achieved. For example, in the case of an image
having 20 unique colours, 5 bits per pixel is sufficient. Thus, only five bitplanes need to

be encoded. Any extra bitplanes are redundant. being made up of all zeros

Bitplane reduction is performed by the encoder as a preprocessing step (the mapper
block in Figure 3.5). before decomposing the bitplanes. First the number of unique
colours that is used in the image. s. is counted. The pixel integer values in the range [0,
2°) are mapped to integer values in the range [0, s). where p is the original number of
bits per pixel. The assignment of the new value follows the order of appearance in the
image in a raster scan. incrementally. starting from the value 0. The reduced number of

bits per pixel can then easily be found from the value of s, as shown in Table 3.7.

Table 3.7: Minimal bits per pixel required

" number of unique colours | bits per pixel
1-2
3-4
5-8

: 8-16

| 17-32

| 33-64

| 65-128

{ 129-256

oI ENTEC NV N [O0Y FO) Py

Figure 3.10 shows an example of the bitplane reduction process. Starting from the top
row and the leftmost column. the first value to appear is 212. It is assigned the new
value of 0. The second value is 23, and it is a new value, so it is assigned 1. The next
new value to appear is 128. which is assigned 2, and so on. The resultant image has the
values 0 to 4. sufficiently represented by 3 bits per pixel, so only 3 bitplanes need to be

encoded.

At the decoder side. the inverse of bitplane reduction will also have to be performed

afier the data is decompressed. so that the original data is obtained.

(A) original

212 | 23 23 23 | 128 | 128 | 128 | 128

212 0 0 0 0 0 0 128

212 0 0 0 0 0 0 128

212 | 23 23 23 23 23 0 128

212 0 0 0 0 0 0 128

212 [1 1 1 1 1 0 | 128 lation table

212 | 1 1 1 1 1 0 | 128 original | new

212 [128 [128 [128 [128 | 128 | 128 | 128 212 0
23 1
128 2

(B) bitplane reduced image 0 3

ol 11 [1] 22272 1 4

0 3 3 3 3 3 3 2

0 3 3 3 3 3 3 2

0 1 i 1 1 1 3 2

0 3 3 3 3 3 3 2

0 4 4 4 4 4 3 2

0| 4| 4| 4| a]a]|3]2

0 2 2 2 2 2 2 2

Figure 3.10: An ple of the bitplane reduction process

3.6.2 Reflected Gray coding

A possible improvement is to map the pixel values from its normal binary
representation to reflected Gray code before compression. In the case of continuous-
tone grayscale images, this brings some improvement to the compression performance
(Rabbani & Melnychuck, 1992). Therefore, the use of reflected Gray codes was
investigated to see whether it would improve compression compared to using normal

binary representation.

In reflected Gray codes, the consecutive integers differ by one bit only. Table 3.8 shows

the reflected Gray codes for the integers 0 to 15. The reflected Gray code can be found

from the binary representation using an exclusive-OR operation, as in the following

equation:

2(i) = b(i) XOR b(i+1) (3.14)
where

(i) is the i-th bit in the reflected Gray code representation

b(i) is the i-th bit in the binary code representation

To find the binary code from the reflected Gray code, the same equation can be used

Figure 3.11 shows an example of converting between binary code and Gray code.

Table 3.8: Reflected Gray codes for 0 to 15

Decimal | Binarv code Gray code | Decimal | Binary code | Gray code
0 0000 0000 8 1000 1100
1 0001 0001 9 1001 1101
2 0010 0011 10 1010 1111 ;
3 0011 0010 11 1011 1110 L]
4 0100 0110 12 1100 1010]
5 0101 0111 13 1101 1011 e
6 0110 0101 14 1110 1001 7
7 0111 0100 15 111 1000 §
z
=)
z
<
2
Binarycode: 0 0 1 1 1 =
i
[
£

Gray code: 0 01 0

Binary code:

& exclusive-OR

Figure 3.11: Converting between binary code and Gray code

61

3.7 Prediction by Partial Matching (PPM)

Prediction by Partial Matching (PPM) uses variable length context modeling instead of
fixed length context modeling (Cleary & Witten, 1984; Moffat, 1990: Howard & Vitter.
1992). The idea is that, the higher the order of the model, the better the compression.
However, during the early stages of compressing the data, the statistics of a higher order
model takes some time to become accurate, hence the compression is relatively
ineffective (Cleary & Witten, 1984). The solution used by PPM is that the lower order

models are used if the higher order models are not yet available.

It starts by attempting to encode a symbol using the largest order model. where the size
of the largest order is some predetermined value. If the symbol to be encoded has not
been encountered previously in that context (a novel symbol), an escape symbol is
encoded. The algorithm then attempts to use the next smaller order model to encode the

symbol.

This process is repeated, resulting in two possibilities:

1. A context that has been encountered with the symbol is obtained. The symbol can
then be encoded using the model associated with that context. The arithmetic coder
is invoked to encode that symbol

2. The symbol has not been encountered previously in any context. including order 0. ‘
In this case, the symbol is encoded using a default model. called the order -1 model.
This is an equiprobable model where all symbols of the alphabet are given the
frequency count of 1. Thus the symbol is encoded by the arithmetic coder with the

probability of 1/s, where s is the size of the source alphabet.

Several factors affecting compression and which were investigated are described next.

'Sl

3.7.1 Maximum order

The maximum order is the size of the largest order model which the method starts with
when attempting to encode a symbol. There is an optimal value for the maximum order
at which compression effectiveness is the best and this value depends on the type of
data being compressed (Cleary & Witten, 1984). Therefore, several values of maximum

order were experimented with to find the optimal value.

3.7.2 Escape probability

The first time a symbol is encountered for a particular context, its frequency count is
zero. This is known as the zero frequency problem. An escape symbol needs to be
encoded with a non-zero probability. What probability is assigned has been found to
affect the compression performance (Cleary & Witten, 1984; Moffat, 1990; Howard &
Vitter. 1992). There are however no theoretical basis for assigning the escape symbol
probability. and the use of heuristics are relied upon instead. Several methods have been

proposed.

The following methods, known simply as A, B, C and D were implemented:
1. Method A - the escape symbol is allocated the frequency count of 1. The total count

for the context is inflated by 1 (Cleary & Witten, 1984).

o

Method B - all the distinct symbols that have been encountered in the context have
their frequency count subtracted by one. The total obtained from this is assigned to
the frequency count of the escape symbol. Thus the total count of the context is
preserved (Cleary & Witten, 1984).

3. Method C - the escape symbol’s count equals the number of distinct symbols that
have been encountered in the current context. The total count is inflated by the same

amount (Moffat, 1990).

4. Method D — each time a novel symbol is d. its count is assigned the value
of %2, while the other % is assigned to the escape symbol. Thus the escape symbol's
count is d/2, where d is the number of distinct symbols that have been encountered

in the current context. The total count is inflated by 1 (Howard & Vitter. 1992).

Table 3.9 summarizes the escape and symbol probabilities used by these methods. The
following notations are used:

Pesc = probability of escape symbol

ps = probability of symbol being encoded

t = total frequency count

f = frequency count of symbol being encoded

d = number of distinct symbols encountered in the current context

Table 3.9: Escape and symbol probabilities

A B C D
Pesc 1/(t+1) d/t d/(t+d) d/2t
Ps f/(t+1) (f-1)/1 f/(t+d) (f-%) /1

As a note, the escape method used is often used to define the type of PPM method and
distinguishes it from others. PPM implementations employing these escape methods are

also called as PPMA, PPMB, PPMC, PPMD etc.

w

.7

w

Exclusion principle

When switching down from a larger order to a smaller order. symbols that have already
been seen in the previous order can be excluded when finding the symbol probabilities
of the smaller order that need to be passed to the arithmetic coder. The increase in the

smaller order’s symbol probabilities improves compression (an example of this can be

“a

found in Moffat, 1990). The exclusion principle was applied in the PPM

implementation.

3.74 Update exclusion

This is an improvement to PPM proposed by Moffat (1990). Each time a non-escape
symbol is encoded, its frequency count in the probability models for the associated
context are incremented. In full counting, the probability model of all the contexts from
the largest order down to order 0 is updated. In single counting (also called update
exclusion). only the models for the context at or above the order in which it was

successfully encoded are updated.

For example, let the largest order be 4. A symbol is successfully encoded at order 2. In
the case of single counting, the probability models of the context for order 4, 3 and 2 are
updated. In full counting, the probability models of the context for all the order 4,3,2,

1 and 0 are updated.

3.7.5 Frequency count scaling

Practical implementations of the arithmetic coder require some limit to be imposed on
the total frequency count of the symbols. This is done because of the limitation imposed
by the size of the variable storing the value of the total frequency count. For example, if ’
the variable is 16 bits, then the limit on the total count would be 2”’-], i.e. 65535. When

the limit is reached, all of the counts of the probability model in that particular context

are halved.

The side effect of this is that it refreshes the statistics of the model and makes it self-

adapting to the changing symbol distributions in the input data (Moffat, 1990). For

example, if a certain colour tends to appear often only in an early part of the image, then
the adaptive model will reflect this by assigning it a high frequency count. However, at
a later part of the image, when the colour no longer appears as often. the statistics are no
longer accurate. Using scaling will help the model adapt to this change more quickly.
Different values of the maximum frequency count were experimented with to find its

effect on compression performance.

3.7.6 Neighbourhood template

As in the case of bitplane coding, a neighbourhood template is used to determine the

context .The standard 1-norm and 2-norm templates were investigated.

3.8 Combined hod of bitplane coding and PPM

In the combined method, both bitplane coding and PPM, as described in the previous
sections, are used. They each operate independently to compress different planes of an

image.

The original image planes are separated into two parts:
1. The 4 LSB bitplanes, treated as a combined, single individual plane of m-ary values,
where m < 16, i.e. the plane consists of symbols from the set {0,1,...,m-1}.

2. The rest of the upper bitplanes, if any. each consisting of binary symbols

PPM is used to compress the 4 LSB bitplanes as a single combined plane, where the
number of symbols can be up to 16. Bitplane coding is used to compress the rest of the
bitplanes individually as binary images. If the number of bitplanes in the original image

is 4 or less, only PPM is used. Figure 3.12 shows an example.

&

bitpianc 0 |

bitplane |

bitplane 2

|:> bitplane 3

0
10111110, . m-any plane
(bitplane 4 -
1 bitpiane 7}
1110,

Use
bitplane
coding

Use
PPM

Figure 3.12: An example of splitting an image into different planes

3.9 Test images

To test and compare the compression methods, a set of test images were used. In data

compression research, the performance of a compression method is usually tested on a

collection of test images or predefined files known as a corpus. The purpose of

establishing a corpus is so that the performance of various compression methods can be

compared against each other based on a common set of source data. Two well-known

examples are the Canterbury and Calgary corpus. The Canterbury corpus is a set of text

files. The Calgary corpus contains various types of files (e.g. image. text, program

source code, executable file).

Since the focus of this dissertation is on compressing road map images. a road map

corpus was established. Figure 3.13 depicts the procedure. The steps taken were:

1. Fifieen maps were obtained from several websites. These maps are of various sizes

and number of colours used. The map images are included in Appendix A.

