Chapter 4:

Implementation

4. Implementation

This chapter claborates in detail the implementation of the compression programs.
Pseudocode and snippets of C code will be presented where appropriate to clarify the
descriptions. Section 4.1 considers the general structure of the implemented programs.
Section 4.2 and 4.3 describes bitplane coding and PPM respectively. Section 4.4

describes an implementation that combines both.

4.1 General structure

The compression program reads the raw image data from a file. compresses the data and
writes the resulting bitstream to an output file. The decompression program does the
opposite. It reads the bitstream from the compressed file. decompresses it and writes the

reconstructed raw image data to a file.

The general structure of the compression and decompression program is shown in
Figure 4.1 and 4.2 respectively. The figures show the blocks involved and the flow of
data. The blocks roughly correspond to the general image compression system shown in

Figure 3.5, as indicated at the right of the figures.

The function of each block in the compression program is as follows:

1. Front-end — it interfaces with the user to obtain the file’s information and
compression parameters. To make the testing process more convenient, this is done
using a script file, so the user can list down all the files to be compressed in the
seript file along with the parameters and then let the program run. It then reads the
raw image data from the source file. performs the required preprocessing and passes

the data to the file-level encoder.

o

File-level encoder — it determines which symbol is to be encoded next and the

context for that symbol, which are both passed to the symbol-level encoder. It also

writes the header information to the output file before compression begins and

performs initialization/termination of the arithmetic coder.

Symbol-level encoder ~ it finds the probabilities required by the arithmetic coder to

encode the symbol. It also

the model’s

Arithmetic encoder — it performs compression by encoding a symbol based on the

probabilities passed to it. It outputs the compressed data as a bitstream which is

written to an output file.

Si :
File information
C Ny

source file

raw data

Front end

preprocessed data l

File-level
encoder

header
information

symbol
context

Symbol-level
encoder

symbol
probabilities

Arithmetic
encoder

bitstream

output file

mapper

model

coder

Figure 4.1: General structure of the compression program

decoded file

reconstructed data

Front end mapper

4 data for post-

processing

A 4
.| File-level
decoder

A
decoded ? model
symbol

symbol target

probabilities ¢
Arithmetic coder

decoder

bitstream

header
information

compressed
file

Figure 4.2: General structure of the decompression program

The function of each block in the decompression program is as follows:

Front-end — it receives the decoded data. performs the required post processing and
writes the reconstructed data to a file

File-level decoder — it determines the context and passes it to the symbol-level
decoder, which will return the decoded symbol. It is also responsible for reading the
header information from the compressed file compression and performs
initialization/termination of the arithmetic coder.

Symbol-level decoder ~ it finds the probabilities required by the arithmetic decoder
to decode a symbol. The arithmetic decoder will return a target value, from which

this block will determine the decoded symbol. It also manages the model’s statistics.

4. Arithmetic decoder — it reads the compressed bitstream from the file and finds the

target value based on the probabilities passed to it.

As mentioned previously, the improved arithmetic coder implementation of Moffat er
al. (1998) was used as the compression “engine” of the programs. The following
functions related to the arithmetic coder were used:

l. arithmetic_encode()

2. arithmetic decode_target ()

3. arithmetic_decode()

4. binary arithmetic_encode()

5. binary arithmetic_decode()

6. start_encode()

7. finish_encode()

8. start_decode()

9. finish_decode()

10. startinputtingbits()

11. startoutputtingbits()

12. doneinputtingbits()

13. doneoutputtingbits()

Detailed explanation of these functions will not be given here but can be found in their <
paper. The pseudocodes for functions (1)-(9) were already given in Section 3.3.
Functions (10)-(13) are initialization and termination functions for file data input and

output and will be described briefly where appropriate.

4.2 Bitplane coding

The compression program is described followed by the decompression program, based

on the general structure mentioned above.

4.2.1 Compression program

Implementation of the front end. file-level encoder and symbol-level encoder is

described next.

4.2.1.1 Front end

The flow for the front end of the compression program for bitplane coding is given in

Figure 4.3.

Front end

Get source file name, /1, W and
compression parameters

TR T .l TR

Read source file into buffer array +
bitplane reduction

Bitplane splitting +
convert to Gray code (if required)

Pass data to file-level encoder

Figure 4.3: Front end of compression program for bitplane coding

First, the program obtains from the user the name of the file to compress and the
image’s height, // and width, W. For experimenting with the compression parameters.
the program should allow the parameters to be changed. For bitplane coding. the
parameters are:

i whether to use reflected Gray code or not

ii. the template type

For item (ii), different versions of the program were compiled. Item (i) was made as a

run-time option.

Next, the data from the file is read into a buffer array. It is assumed that each byte of
the file’s data is an individual symbol to be encoded. Each byte is read serially, which is

equivalent to scanning the image in a raster fashion, from lefi-to-write, top-to-bottom.

The following preprocessing steps are performed on the data:
1. Bitplane reduction
2. Bitplane splitting

3. Conversior into reflected Gray code, if required

4.2.1.1.1 Bitplane reduction

As explained in Section 3.6.1, bitplane reduction is applied to ensure that only just
enough bits are used to represent the pixel values, so that optimum compression can be
achieved. Figure 4.4 shows the pseudocode for the bitplane reduction process. which is

performed on-the-fly while reading the data from file to a buffer array.

file

assign value > value of s:

16<
32<
64<
128<

Figure 4.4: Pscudocode for bitplane reduction process

A translation table is set up so that the decompression program can do an inverse
mapping to recover the original values. The array orig_new[] maps the original value
to the new value. The index of the array represents the old value, while the
corresponding array element is the assigned new value. The array new orig(] does the
opposite. It maps the new value to the original value. The index of the array represents

the new value. while the corresponding array element is the original value.

The elements of the array : new[] are initialized to -1, to indicate that the
corresponding symbol have not been seen before in the process. The variable s, used

for keeping track of the number of unique colours (i.e. symbols) seen so far, is

initialized to zero.

Each symbol is read from the file into a variable, temp. The array oriq new(] is

consulted 1o check whether the symbol has been seen before. If not. then the arrays

orig new(]and new orig(] are modified to register the new symbol, and the variable
s is incremented. Finally, the buffer array is filled with the equivalent bitplane-reduced

value of the symbol read from the file.

At the end of the process, s gives the number of different symbols seen i.e. the number
of unique colours used in the image. The reduced number of bits per pixel. bpp. is

found from the value of s.

4.2.1.1.2 Bitplane splitting

Bitplane splitting decomposes the Hx image data into p HxW bitplanes. where p is the
number of bits per pixel. Figure 4.5 shows the pseudocode for the process. The
conversion of the symbols from binary code to reflected Gray code representation is

done if required. It is integrated into the same process.

The array data(] is used to store the data after bitplane splitting. The variable use o=

is used to indicate whether to apply Gray coding.

if (use Gray code)
use _gc - 1,
else
use_gc « 0,

for (i=0 to (HxW)-1)({

temp « buffer(i]

bit number . bpp

for (p=0 to bpp-1){
bit_number « bit_number-1
bit « temp >> bit_number
data[p*H*W+i] « (bit XOR(use_gc AND (bit>>1)))

}

Figure 4.5: Pseudocode for bitplane splitting

Each symbol is read from the buffer. For each bitplane, the relevant bit is found by
extracting it from the symbol using a shift operation. The particular bit, contained in the
variable .+ is right-shified to the LSB position by an amount indicated by the variable
bit_nuzcer. Conversion to reflected Gray codes is also performed if required, based on
the equation described in Section 3.6.2. The variable bit is shifted one bit to the left
and bitwise-exclusive-ORed with its original value. Finally, the bit is extracted using a

bitwise-AND operation with the mask 00000001,.

4.2.1.2 File-level encoder

The file-level encoder is responsible for encoding of the file as a whole. The flow of the

function is given in Figure 4.6.

Before starting the compression, relevant information are written as the header of the
output file. A couple of initialization functions, startoutputtingbits() and

start_encode(), are called. Then, the models are created and initialized.

To encode the symbols in the bitplanes, the context of each symbol is found and passed
along with the symbol to the symbol-level encoder. When all the symbols have been
encoded. the termination functions, finish_encode() and doneoutputtingbits(),

are called.

The next sections elaborate on these steps.

File-level encoder
Write header i
to output file i
LT Y T IO
Initialization
Encode
each
symbol Pass symbol and context i
to symbol-level encoder i
finish_encode()
Termination

Figure 4.6: File-level der for bitplane coding

4.2.1.2.1 File header

The organization and contents of the file header will very much depend on the actual
software implementation. At the minimum, the information required includes the
image’s height, width, the number of symbols and the translation table created by the
bitplane reduction process. Also, the palette table needs 1o be included since it is likely

that different files will use different palette tables. If the final software implementation

allows the user o select the compression parameters, then these options will have to be

included in the file header so that the decoder knows which option was used by the

encoder.
4.2.1.2.2 Initialization
The function --:r-cucouttingbits() initializes an output buffer to 0. The output

buffer is a one byte variable used to store the bits generated by the arithmetic coder
during the compression process. The arithmetic coder generates the compressed
bitstream one bit at a time. Since it is to be stored in a file, the bitstream needs to be
written to the file on a byte-by-byte basis. This is done by storing the bits temporarily in
the output buffer. When the buffer has collected enough bits to become a full byte, it is

written 1o the file and the buffer is cleared.

The function start _encode () initializes the arithmetic coder’s range variables, L and

R, such that the coding range is set at [0, 2""') , as required by the arithmetic coder.

4.2.1.2.3 Creation and initialization of the models

There are three things that need to be done with regards to the models:
1. Creating the models
2. Initializing the models
3. Managing the models
a. updating the models’ statistics when a symbol is encoded

b. scaling down when applicable

Item (3) is performed by the symbol-level encoder. As such, only item (1) and (2) is

described here.

Creating the models

Before encoding can commence, the models are created and initialized. Each model is a
probability table containing statistics of the data being encoded. There is a model
associated with each possible context. A C struct type is used 1o store the probability
table, as shown by the C code snippet below:
typedef struct {
unsigned short c0;
unsigned short cl;

} bpc_prob_table;

The variable o stores the frequency count for the symbol 0. while - stores the

frequency count for the symbol 1.

The models are stored in an array whose size is given by the number of possible
contexts, 2°, where c is the number of context bits. Each element of the array is the type
bpc_prob_table. The array is dynamically allocated during run-time. In: practice, if the
number of context bits is fixed, the array size can also be fixed during compile-time.
Here dynamic allocation was used because of the need to experiment with various

number of context bits (i.e. different template types).

alizing the models

To initialize the models, c0 and c1 of each probability table are assigned the value of 1.
The models are reinitialized each time a new bitplane is being encoded. This is to ensure
fresh statistics are used for each bitplane, i.e. statistics from previous bitplane are not

used for the next bitplane.

42.1.2.4 Finding the context

The context for a symbol is found using a neighbourhood template. The template
consists of a set of pixels in the neighborhood of the current pixel that is being encoded.
T'he context is calculated from the pixel values as a binary digit, which then serves as an

index to the array containing the corresponding probability table.

In the implementation, C macro are used to find the context, as shown in an
example in Figure 4.7. The conditional if is used to test whether a template pixel lies
outside the image boundary. If yes, then the pixel is assigned the value 0. The shift
operation and bitwise-OR are used to move the context bits to their appropriate
positions. To find the context, the macro statement is called, e.g.:

-ontext = TEMPLATE (data);

where data isa pointer to the data buffer array.

template

0 JoTJo]

0 | X

> BIT_W(x) column==020:* (x+ptr-1)

fine BIT_N(x) row==020:* (x+ptr-W)
ine BIT_NE(x) (column==W-1| | row<1)20:* (x+ptr-w+l)
ine BIT NW(x) (column<1||row<1)?20:* (x+ptr-W-1)

TEMPLATE (x)

)) 1 (BIT_N(x)<<1) | (BIT_NE(x)<<2) | (BIT NW(x)<<3)

Figure 4.7: Example of a code snippet used to find the context

This approach was used to find the context since it is easy to modify. hence suitable for
testing purposes when we want to experiment with various template types and sizes. In
an actual implementation, if the template and maximum order s fixed. it would be more
efficient to embed the process of calculating the context into the encoding loop of
Figure 4.8 without the need to test whether a neighbour pixel is outside the image

boundary.

4.2.1.2.5 Encoding each symbol

For each symbol, the symbol and its context are passed to the svmbol-level encoder.
Encoding is done plane-by-plane, starting from the MSB bitplane down to the LSB
bitplane, as shown in the pseudocode given in Figure 4.8. Before encoding begins for
cach new bitplane, the probability tables are reinitialized, as mentioned in the previous

section.

ptr « 0
for (p=0 to bpp-1){
initialize models
for (row = 0 to H-1)
for (column = 0 to W-1){
symbol . data[ptr]
find the context for symbol
call symbol-level encoder
ptr « ptr+l

Figure 4.8: Pseudocode for encoding each symbol

4.2.1.2.6 Termination

The function £ inish_encode () is called to terminate the arithmetic coder. It involves
calculating and outputting sufficiently many bits so that the final interval can be
identified by the decoder unambiguously, irrespective of what other bits follow on from

there (Moffat er al., 1998).

The function done outputting bits(; function writes the final byte to the file.
This happens if the output buffer byte has not yet been completely filled to 8 bits. In this
case. the buffer will be shifted so that the bits occupy their appropriate positions and

then the byte is written to the file.

4.2.1.3 Symbol-level encoder

The symbol-level encoder is responsible for encoding a symbol by calling the arithmetic
coder and managing the model, as shown in Figure 4.9. First the symbol is encoded by
calling binary arithmetic_encode(). Then the probability table for the current

context is updated and the frequency counts scaled down if necessary.

Symbol-level encoder

Encode symbol by calling the binary
arithmetic encoder

LR I g B e g e

I Update model of the current conlcxrl

Managing

the model

Scaling down (if necessary)]

Figure 4.9: Symbol-level encoder for bitplane coding

Managing the models

Figure 4.10 shows the pseudocode for managing the models. The models are updated
cach time a symbol encoded, in order to reflect the latest statistics. as per the
requirement of adaptive modeling. The frequency count of the symbol being encoded in

the current context’s model is incremented.

Scaling down the frequency counts is also performed when a defined maximum value is
exceeded. This has to be done in order to prevent overflow of the variables = and cl.
The values of co and c1 are halved to the smallest integer equal or larger than the

halved value.

do for the current context’s probability table:

/*update the probability table*/
if (symbol being encoded = 0)

c0 « cO0+1
else

cl « cl+l

/*scale down if necessary*/
if (c0 + cl > maximum value) {
c0 « (c0+1) >> 1
cl « (cl+1) >> 1

Figure 4.10: Pseudocode for model

4.2.2 Decompression program

Implementation of the decompression program is described next. Some functions are
identical to those described in the previous sections. In this case. their description will

not be repeated and the reader is kindly requested to refer to the relevant section.

4.2.2.1 Front end

T'he flow of the front end is given in Figure 4.11.

Front end

Get compressed file name |§1

l TN

Call file-level decoder to
decompress the data

T T

v
Bitplane merging +
convert gray code to binary
representation (if required)

v

| Inverse of bitplane reduction l"

v
Write data to output file |“

wvl]
v
| Compare data with original —"1

Figure 4.11: Front end of the decompression program for bitplane coding

The program obtains the name of the file to decompress. The file-level decoder is

called, which is responsible for reading the file header information and decompressing

the data to a buffer. The decompressed data form the bitplanes which need to be merged

to obtain the symbols. If Gray coding was used in the encoder, then the symbol is

transformed back to the binary representation. The inverse of bitplane reduction maps

the symbols back to the original symbol. The result is the raw image data which should

be identical to the original data. For confirmation, a comparison is done between the

reconstructed data and the original data.

4.2.2.1.1 Bitplane merging

The decompressed data is written into an aray by the file-level encoder after the
decompressing process. The bitplanes need to be merged to obtain symbols of p bits per
pixel. Figure 4.12 shows the pseudocode. Conversion from reflected Gray codes to

binary representation is done if required. It is integrated into the same process.

The array buffer(] contains the decompressed data in bitplanes. The variable use gc

indicates whether Gray coding was applied.

Each bit of a symbol is read from the corresponding bitplane at the same pixel location.
The bits are placed into their positions in the symbol using shift operation and bitwise
OR. Conversion from reflected Gray code to binary code is also performed if required.

The merged symbol is written into the array datafl.

/*bitplane merging*/
if (use Gray code)
use_gc «~ 1,
else
use_gc ~ 0,

for (i=0 to (HxW)-1)({
symbol « 0
for (p=0 to bpp-1)
symbol.- (symbol<<1)OR (buf fer [p*
data(i] «~ symbol

XOR (use_gc AND symbol))
}
/*inverse of bitplane reduction®/

for (i=0 to (HxW)-1)
write new orig(data(i]] to out

Figure 4.12: Pseudocode for bitplane merging and inverse of bitplane reduction

4.2.2.1.2 Inverse of bitplane reduction

The inverse of bitplane reduction is performed to map the data back to the original
symbol. This is done simply by using the translation table and performed on-the-fly

when writing the symbol to the output file, as shown in Figure 4.12.

4.2.2.1.3 File comparison

To confirm the reconstructed data is identical to the original data, as should be the case
in a lossless compression scheme, both files are compared numerically byte-by-byte.
Figure 4.13 shows the pseudocode. If one of the bytes is not identical, then the files are

not identical and a flag is set. Of course, both files should also be of the same size.

flag « 0
if (decoded file size = original file size)
while (not reached end-of-file)&(flag=0) {
A ~ byte read from original file
B ~ byte read from decoded file
if (A # B)
flag 1
}
else
flag -1

Figure 4.13: Pseudocode for file ison

4222 File-level decoder

The file-level decoder is responsible for managing the decoding the file as a whole. The
flow of the function is given in Figure 4.14. Before starting the decompression,
information regarding the file is read from the header. The functions

startinputtingbits() and start decode() are called for initialization purposes.

Then, the models which contain the probability tables are created and initialized. The

bitstream is decompressed by calling the symbol-level decoder.

After the bi has been letely decoded. termination should be done using the

P

functions finish_decode () and done == .. However, in Moffat er al.’s

implementation, finish_decode () is an empty function that does nothing. The second
function, doneinputtingbits (), is not necessary when there is only a single bitstream

in the file. Thus, the functions are not used. saving two function calls.

File-level decoder

L Read file header —l'

S

Initialization v

start_decode () —ll

v
L Create model

Initialize model]

T ulnnlnn.\.vu*unnll-uun.nhn T

Find current context

Decode

each

Call symbol-level decoder

symbol

Termination

Figure 4.14: File-level decoder for bitplane coding

The decoder program has to use a model that is identical to that used by the encoder

program in order to decode the data correctly. Therefore, the creation, initialization and

4.2.2.2.1 Initialization

An input buffer is used to store the byte data read from the file to be decompressed. A
pointer is used to point to the current bit of the buffer that is to be decoded, since the
decoder treats the input data as a bitstream. When the pointer reaches the final bit, a new
byte is read into the buffer from the file. The function startinputtingbits() simply

initializes the pointer to the first bit to be decoded.

The function start_decode() initializes the arithmetic decoder’s range variables as
required by the arithmetic decoder. The initial offset value, D, is initialized to 0 while
the range, R, is initialized to 2°". D is then filled with as many bits, via the input buffer,

depending on how many bits are used to represent the coder’s limits (see Section 3.3.1).

42222 Decoding each symbol

The compressed bitstream is decoded by calling the symbol-level decoder. The
successfully decoded symbols will be filled into an array, buffer (] which represents *
the p bitplanes. The bits are written into their appropriate bitplanes, starting from the

MSB bitplane down to the LSB bitplane, as shown in the pseudocode in Figure 4.15.

As in the encoder, the probability tables are initialized before decoding begins for each
new bitplane. The context is found from a neighbourhood template, similar to the

encoder. The decoder uses the same neighbourhood template as the encoder.

ptr « 0
for (p=0 to bpp-1){
initialize model
for (row=0 to H-1)
for (column=0 to W-1){
find the current context
buffer[ptr] -~ symbol-level decoder()

ptr « ptr+l

Figure 4.15: Pseudocode for decoding each symbol

4.2.2.3 Symbol-level decoder

The symbol-level decoder is responsible for decoding a symbol by calling the arithmetic

decoder and managing the model, as shown in Figure 4.16. First the function call

binary arithmetic_decode() is made, which returns the decoded symbol. Then the
probability table for the current context is updated and scaled down if necessary, in the

same way as its counterpart in the compression program.

Symbol-level decoder

Decode the symbol by calling the
binary arithmetic decoder

TG T

thdatc model of the current contex(—' |

M

Scaling down (if necessary) |

the model

TR T

Figure 4.16: Symbol-level decoder for bitplane coding

PERPUSTAKAAN UNIVERS:T] MALAYA

4.3 Prediction by Partial Matching (PPM)

This section describes the implementation of the PPM compression and decompression
program. Certain functions are identical to those described in previous sections. In this
case, their description will not be repeated and the reader is kindly requested to refer to

the relevant section.

4.3.1 Compression program

The implementation of the front end. file-level encoder and symbol level-encoder is

described next.

4.3.1.1 Front end

The flow for the front end of the PPM compression program is given in Figure 4.17.

Front end

Get source file name, H, W
and compression parameters
Read source data into buffer array +
bitplane reduction

L Pass data to file-level encoder

Figure 4.17: Front end of compression program for PPM

First, the program obtains from the user the name of the file to compress and the
image’s height, /7 and width, W. For experimenting with the compression parameters.
the program should allow the parameters to be changed. For PPM, the parameters are:

i. . escape method type (A, B, C or D)

ii. maximum order value, k

iii. neighbourhood template type

iv. update exclusion — full counting or single counting

V. frequency count scaling value

For item (i), (iii) and (iv), different versions of the program were compiled. Item (ii)

and (v) were made as run-time options.

Data from the file is read into a buffer array and bitplane reduction is performed on the
data, as in bitplane coding. For PPM, bitplane reduction is performed in order to bound
the symbols’ values to the range of [0, s), where s is the number of unique colours.
Thus, from the PPM compressor’s point of view, the alphabet of the message to be
compressed is comprised of the letters from the set {0, 1,..., s-1}. The processed data is

then passed to the file-level encoder.

4.3.1.2 File-level encoder

The file-level encoder is responsible for managing the encoding of the file as a whole.
The flow of the function is the same as that of the bitplane coding given in Figure 4.6.
Initializing and terminating the arithmetic coder use the same functions. The differences
are in the implementation of the model, finding the current context and how each

symbol is encoded.

4.3.1.2.1 Creation and initialization of the models

PPM uses a more complicated model compared to bitplane coding. As before, three
things need to be done with regards to the models:

1. Creating the models

2. Initializing the models

3. Managing the models

Creating and initializing the model is common to the escape methods A, B, C and D.
However. management of the model is slightly different for method D. Model
management is done while encoding a symbol and will be described in Section

43.1.23.

Creating the models

Each model is a probability table containing statistics of the data being encoded. There
is a model associated with each possible context for each order, from order -1, order 0,
and so on, up to the maximum order k. The maximum order is a predetermined value

specified by the compression parameter.

This probability table implementation is based on the one used by Witten er al. (1987)
and is adapted for use here. A C struct type is used to store the probability table, as
shown by the C code snippet below:

typedef struct

rcum freq;
ar *char_to_index;

i char *index to_char;

table;

The structure is made up of four arrays. The function of each array is as follows:

I. freql] —used to store the frequency count of each symbol
2. cum_freq(] —used 1o store the cumulative frequency count of the symbols.
- 3. char to_index[] - translates a symbol to its index in the probability table.

4. index_to char[] - translates the probability table’s index to the associated

symbol.

Only pointers to the array are declared so that the array size can be dynamically
allocated during run-time. This is because it is only during run-time that we know how

many symbols are used. The size dynamically allocated to freq(), cum fres: . and

index_to_char(] is s+/, while for char_to index(] the sizeis s.

The reason that a translation table is set up to translate between the symbol and its index
in the probability table is that the probability table stores the statistics as a move-to-front
list, ordered according to the symbols’ frequency counts. The symbol with the largest
frequency count occupies the ‘top of the table (given by freq(1)) followed by the
symbol with next largest frequency count and so on. This way, according to Witten er
al. (1987), the frequent symbols can be decoded with smaller number of execution

loops. The element cum_freq(0] is used to store the total frequency count.

The probability tables are stored in a two dimensional array, as shown in an example in
Figure 4.18. The row represents the order and the column represents the possible

contexts for that order. Order 0 has only one probability table associated to it. For order

I and higher, there is one probability table for each possible context. The number of

possible contexts for an order n is given by s”.

No probability table is kept for order-1. Instead the probabilities are found implicitly

from the symbol 10 be encoded (as shall be described in Section 4.3.1 3.0).

contexts
order0 | 0
ordert | 0 1, 2] 3| 4
order2 | 0 1 34| S [24]
order 3 | 1 RN I [624]
= _freq()
index|[]
o_char(]

probability table for context 2, order 3

Figure 4.18: Example of how the probability tables are stored

Initializing the models
Initializing a model is shown by the pseudocode in Figure 4.19. It is divided into:
1. Setting up the translation tables, char_to_index[] and index to char (]

2. Initializing the elements of the freq(] and cum freq(| arrays.

tup translation table */
-1) 4

ex[i] « i+l
char(i+l] « i

freq(] and cum_freq(] */
> s){

Figure 4.19: Pseudocode for initializing a model

a7

The char_to_index(] array is set up such that the array index represents a symbol and
the corresponding element is the index for that symbol in the probability table. It is the
other way around for the index to char(]. This way, given a symbol. its index in
the probability table can be looked up using the char_to_index(1, and vice versa.
Note that when a symbol x is referred to as preceding y, this means that the position of

symbol x in the probability table is below y ie. char to_ir

char_to_index[y].

4.3.1.2.2 Finding the context

The context for a symbol is found using a neighbourhood template. The template

consists of a set of pixels in the neighborhood of the current pixel that is being encoded.

The values of the pixels forming the template are filled into an array. -

(l.as
shown by the pseudocode in Figure 4.20. The array is referred to when calculating the
current context for a given order. If a portion of the template lies outside the image. the

default value 0 is used for the pixels that lie outside the image boundary.

for (i=0 to k-1){
if (pixel is outside image boundary)
neighbour (i) «~ 0
else
neighbour (i) « data[x]

Note: data([] is the data buffer, x gives the position of the neighbour pixel.

Figure 4.20: Pseudocode for filling in the neighbour] array

The conditional if is used to find the neighbourhood pixels because it is easy to modify,
hence suitable for testing purpose when experimenting with various templates. In an
actual implementation. if the template and maximum order is fixed, it would be more
efficient 1o embed the process of filling neighbour] into the encoding loop of without

the need 1o test whether a neighbour pixel is outside the image boundary.

The context is calculated as an s-ary digit number, which then serves as an array index
to the corresponding probability table for that context. The following equation is used to

calcuiate the value of the context:

k-1
context = Y n;s'
=0

where n, denotes neighbour(i], s denotes the number of symbols used and £ is the

maximum order..

The equation gives the order k context, which is the first context that needs to be
calculated when encoding a symbol, since the PPM algorithm starts by attempting to
encode using the largest order. If we need to find the context for the next lowest order,
k-1. all that needs to be done is to subtract the value of the most significant digit from

the context for order k. The subsequent lower orders are found in a similar fashion.

4.3.1.2.3 Encoding each symbol

Each symbol is encoded by calling the symbol-level encoder. The encoding follows the

PPM algorithm. as shown in the pseudocode given in Figure 4.21.

ptr « 0
for (i=0 to H-1)
for (j=0 to wW-1){
flag « 0
current_order . k
sym «~ data(ptr]
find the current context
ptr « ptr+l

do{

if (freq{sym] > ZERO) {
initialize exclude[] to 0
find exclusion symbols
call the symbol-level encoder to encode sym
update model of current context and order
flag « 1

}

else{

if (cum_freq[0]+#0){
initialize exclude[] to 0
find exclusion symbols
call the symbol-level encoder to encode esciape
update model of current cortext and order
}
else
update model of current context ana craer

current_order « current_order-1
find the context for the lower order

}
}while (current_order > 0 AND flag #1)

if (current_order= -1)
call the symbol-level encoder to encode sym

if full counting
for (o = current_order-1 to 0)
update model

Note:

All references to freq(], cum_freq(], char_to_index|] and irdex_-o
are for the ppm_prob_table of the current context of the current order
For methods A, C, and D: ZERO = 0

For methods B: ZERO = |

Figure 4.21: Pseudocode for encoding a symbol using PPM

The function of each variable in the pseudocode is as follows:
I, =ara00 - the array which holds the symbols to be encoded
2. =+ - used to point to the current symbol being encoded.

3. fls:-keeps track of whether a symbol has been successfully encoded

order - keeps track of the current order
5. sy~ - the symbol to be encoded
6. =x-l.s207 - anarray to mark the symbols for exclusion, to be used by the

symbol-level encoder for probability calculation

The procedure for encoding a symbol is as follows. First, attempt to encode the symbol
is made using order , the maximum order. The symbol’s frequency count is looked up
in the probability table corresponding to the current context and order. If the count is
such that the symbol is considered to have been ‘seen’ (i.e. a non-novel symbol) before
in the current context, then it can be encoded. Otherwise, an escape symbol is encoded
if required and encoding is attempted at the next lower order. This is repeated until the
symbol is successfully encoded or order 0 is reached. If even with using order 0 the

symbol is still not successfully encoded, then the symbol is encoded using order -1.

Note that a symbol is considered to have been ‘seen’ in the current context if its
frequency count in the corresponding probability table is larger than 0 for method A, C .

and D. and larger than 1 for method B.

To encode the symbol, first the exclude [)array needs to be filled to mark the symbols
for exclusion. so that the symbol-level encoder can apply the exclusion principle. This is
done by finding the symbols that have already been ‘seen’ (i.e. non-novel symbols) in

the previous higher order. Then, the symbol-level encoder is called.

101

Let order n be the order in which the symbol was successfully encoded. where n > (.
For each order k down to order n, the relevant probability tables corresponding to the
current context will be updated. If full counting is applied. then for all the orders lower
than order n, if any, the relevant probability tables corresponding to the current context

will also be updated. However, if single counting is applied, this step is omitted.

For example, if k = 4 and n = 2, then in the case of full counting. the probability tables
for all the orders 4, 3, 2, 1 and 0 are updated. In the case of single counting. cnly the

probability tables for orders 4, 3 and 2 are updated.

4.3.1.24 Managing the model

The model is updated each time a symbol is encoded, whether it is a normal symbol or
escape symbol. Updating consists of:

1. Scaling down the frequency counts when required

2. Incrementing the frequency count of the encoded symbol and moving the symbols’

position to keep the probability table ordered as a move-to-front list

Updating is common for method A, B, and C, but slightly different for method D. The
updating procedure is shown in the pseudocode of Figure 4.22. and is adapted from the

implementation by Witten et al. (1987).

Scaling down

Scaling down the frequency counts is performed when a specified maximum value for

the total frequency count has been reached, as shown in Figure 4.22

do for the current context and order:

/* if required, do scaling */
if (cum_freq[0] 2 maximum value) {
cum «~ 0
for (i=s to 0){
halve freq(i] .
cum_freq[i] ~ cum
cum «~ cum + freq[i]

}

/* find symbol’s new position. */

for (i=symbol index to freq[i]=freq[i-1])
e i-1

if (i=0) i1

if (i<symbol_index) {
templ ~ index_to_char[i]
temp2. index_to_char[symbol_index]
index_to_char[i] ~ temp2
index_to_char[symbol_index] « templ
char_to_index[templ] « symbol_index
char_to_index(temp2]. i

}

/* increment the frequency count for the symbol */
increment freq(i] by increment_value
for (i=i-1 to 0)

increment cum_freq[i] by increment_value

Note:

1. halve freq[i] is given by:
Method A,B,C: freq(i)~(freq[i]+1)>>1
Method D: freq[i).(freq(i]>>1) OR 1,

2. symbol_index is the symbol’s index in the probability table

3. ForMethod A,B,C: increment value . 1
For Method D: if (freq[i]=0) increment value « 1
else increment_value . 2

Figure 4.22: Pseudocode for updating a model

For method A, B, and C, scaling is done by halving the freq(] elements’ values and
taking the smallest integer that is equal or larger than the halved value (the ceiling
function). For method D, it is done by halving the treq(] elements values, and taking
the odd-numbered integer closest to the halved value. Additionally, cum freq() is

updated to reflect the new frequency counts.

107

Incrementing the frequency count

Each time a symbol is encoded, its frequency count in the relevant probability table
needs 1o be incremented by a predetermined amount. The amount depends on the escape

method used, as shown in the pseudocode of Figure 4.22.

In order to keep the table ordered according to the frequency counts, the symbol’s new
position is found. If its new position is higher in the table compared to its present
position. it will be moved, while char to index(] and index to_char(] are
updated accordingly. Its value in freq() is then incremented and cum freq(] is

updated accordingly.

4.3.1.3 Symbol-level encoder

The symbol-level encoder is responsible for finding the symbol probability to be passed
to the arithmetic encoder, given the symbol to be encoded and the probability table of

the current context and the current order.

The function call to the arithmetic encoder is in the form of:
arithmetic_encode (1,h,t
where 1, h and t are the function parameters representing the symbol probability (as

described in Section 3.3). The way the probability is found is handled differently for

order -1 compared to order 0 and higher.

4.3.1.3.1 Order -1 encoder

The pseudocode for the order -1 encoder is shown in Figure 4.23. It encodes a symbol

based on an equiprobable model, where each symbol is assigned the same frequency

108

count of 1. Therefore, the total count +: is equal to the number of symbols used s. so

each symbol is encoded with the probability 1/s. Table 1.1 shows the probability table

for the order -1 model.

j-0
k-0
for (i= 0 to s-1)
if non-novel symbol
{
k « k+1
if (i<s)
J o~ j+1
)
k « k-1
arithmetic_encode (sym-3

Figure 4.23: Pseudocode for order -1 d

Table 4.1: Probability table for order -1 model

symbol | freq | cum_freq
0 1 0
1 1 1
2 1 2
‘ | .|
s-1 1 s
s]

No probability table is actually kept for the order -1 model. This is because 1, hand t

can be trivially obtained. If the symbol to be encoded is - then:

1 = sym
h sym + 1

t s

To apply the exclusion principle, the number of non-novel symbols is subtracted
accordingly. Whether a symbol is non-novel is determined from the order 0 probability
table. A symbol is considered as non-novel if its frequency count is more than 0 for
method A, C, and D, and more than 1 for method D. With exclusion applied, the
equations above become:

1= sym -5

h = sym + 1 j

t s - k
where,

i = number of non-novel symbols preceding sym in the probability table

k = total number of non-novel symbols

4.3.1.3.2 Order 0 and above encoder

There are two cases: encode an escape symbol or a normal symbol. In both cases, there
are differences between the way the different escape methods find 1, h and t.
Therefore, three set of pseudocodes are presented, each for method A, B and C (method

D is common with C)

Encoding escape symbol

Figure 4.24 shows the pseudocode for encoding an escape symbol. No entry is stored <
for the escape symbol in the probability tables. The escape symbol is encoded by
placing an imaginary entry for it at the bottom of the probability table. Therefore the
values of 1, 1 and t have to be found accordingly, depending on which escape method

is used, as summarized in Table 4.2.

106

To apply the exclusion principle. the excluded symbols® counts have to be subtracted
from 1, h and t. To find the frequency counts to be subtracted, the probability table
for the current order and context is traversed until the value of freq(i] is 0. Ifa symbol
is marked for exclusion. as indicated by the array exclude(], its contribution.to the

frequency count will be subtracted.

for exclusion)

if (cum_freg!”: =
arithmet

freq[0]-k+1)

Method B:

k-0
for (i=1 to s)!
if b

if (the i-th sy
K - i

marked for exclusion)

}

e ~ i-1

if (cum_fregi(
arithmetic_e

freq(0]-k)

Method C, D:
k-0
for

if

rked for exclusion)

q[0]-kte)

Figure 4.24: Pseudocode for encoding an escape symbol

107

Table 4.2: Finding I, h and t for escape symbol in method A, B, C and D

[escape method | A B C.D]
1 0 0 0

h 1 e e

t cum_freq(0]-k+1 |cum freq[0]-k cumf[req[O]fkil

Where,

o

= total number of symbols seen in the current context

=

= total frequency counts of excluded symbols

Encoding a normal symbol

Figure 4.25 shows the pseudocode for encoding a normal symbol. Finding the frequency
counts to be subtracted due to exclusion is done in a similar fashion as in encoding an
escape symbol. The symbol is encoded keeping in mind that the escape symbol is
placed as an imaginary entry at the bottom of the probability table. Table 4.3

summarizes how the values of 1, h and t are found for encoding a normal symbol.

Table 4.3: Finding 1, h and t for a normal symbol in method A, B, C and D

method: | A B C,D

1 cum_freq[sym)-j+1 cum_freq[sym]-j+sym [cum_freq(sym]-j+e

h cum_freq(sym-1]-j+1 [cum_freq[sym-1]- cum_freqg[sym-1]-
j+sym-1 jte

t cum_freq(0]-k+1 cum_freq(0]-k cum_freq(0)-k-e |

Where,

e = total number of symbols seen in the current context
J = total frequency counts of excluded symbols preceding sym in the probability table

k = total frequency counts of excluded symbols

Method A:

smoel] = 0)

Tool was marked for exclusion){

= I+ freqli]

Sum_ q[sym]-jol,cum_freq[sym—ll—jcl,

symbol] = 0)

i-th symbol was marked for exclusion)
(freqli]>1){

k — k+ freq[i]-1

if (i>sym) je— j + freq[i)-1

encode (cum_freq[sym]-j+sym, cum_freq[sym-1]-j+sym-1,
{0]-k)

_freq

Method C, D:

j + freq(i]

< (cum_freqg(sym)-j+e,cum_freq(sym-1]-j+e,
-e)

Figure 4.25: Pseudocode for encoding a normal symbol

109

PERPUSTAKAAN UNMIV

ERSITI MALAYA

4.3.2 Decompression program

Impl ion of the decompression program for PPM is described next.

43.2.1 Front end

The flow of the front end for the PPM decoder is given in Figure 4.26. The blocks have
the same functions as that of the front end in bitplane coding, except bitplane merging is

not included.

Front end
Get compressed file name j i

v

Call file-level decoder il
to decompress data

v
Write data to output file f
v
Compare data with original l

T

Figure 4.26: Front end of the decompression program for PPM

4.3.2.2 File-level decoder

The file-level decoder is responsible for managing the decoding of the file as a whole.
The flow of the function is same as that of the bitplane coding given in Figure 4.14. The
only blocks which are different are the implementation of the model. finding the current

context and how each symbol is decoded. Of these, the first two is the same as described

for the compression program in Section 4.3.1.2. Therefore, only the decoding of each

symbol using PPM is described next.

4.3.2.2.1 Decoding each symbol

Each symbol is decoded by calling the symbol-level decoder. The decoding follows the

PPM algorithm. as shown in the pseudocode given in Figure 4.27.

The functions of the variables in the pseudocode are:

1. s:-- - the array which holds the symbols that have been decoded

2. ot - used to point to the current symbol to be decoded.

3. flag-keep track of whether a symbol has been successfully decoded

4. current order -keep track of the current order

5. sym - the symbol to be decoded

6. exclude() - an array to mark the symbols for exclusion, to be used by the symbol

level decoder for probability calculation

Decoding is performed as follows. First, an attempt is made to decode the symbol using
order & and the corresponding context. If an escape symbol is obtained, the next lower
order is tried. This is repeated until the symbol is successfully decoded or order 0 is
reached. If even with using order 0 the symbol is still not successfully decoded, then the -

symbol is decoded using order -1.
The probability tables are updated in lockstep with the encoder. Calculating the current

context is same as that of the encoder side, making use of the same neighbourhood

template that the encoder employed.

"

ptr «~ 0
for (i=0 to H-1)
for (j=0 to W-1){
flag « 0
current_order . k
find the current context
do{
if (cum_freq(0]=0) {
current_order « current_order-1
find the lower order context
}
else(
initialize exclude[]to 0
find exclusion symbols
sym . symbol level decoder()
if (sym is not escape) flag -1
else{
current_order « current_order-1
find the lower order context

}

}
}while (current_order20 AND flag#1)

if (current_order= -1){
sym «~ symbol_level_decoder()
current_order . 0

}

data[ptr] « sym
ptr « ptr+l

for (o=k to current_order)
update model

if full counting
for (o=current_order-1 to 0)
update model

Figure 4.27: Decoding each symbol in PPM

4.3.2.3 Symbol-level decoder

The symbol-level decoder is responsible for finding the parameters to be passed to the
arithmetic decoder. The arithmetic decoder does not actually return the decoded

symbol, but rather a target value which points to where the syvmbol is in the probability

table. Therefore the symbol-level decoder will also need to find what the decoded

symbol actually is.

The arithmetic decader has two functions that need to be called:

arithmetic_decode_target (t)

arithmetic_decode(1,h,t)
where 1, h and t are the function parameters representing the symbol probability (as
described in Section 3.3). The first function returns the target value, while the second
updates the arithmetic coder’s state. The way the probability is found and the symbol is

decoded is different for order -1 compared to order 0 and higher.

43.23.1 Order -1 decoder

Similar to its encoder counterpart, the order -1 decoder decodes a symbol based on an
equiprobable model, where each symbol is assigned the frequency count of 1 and no
probability table is actually kept for the order -1 model. The pseudocode is shown in

Figure 4.28.

j0
k-0
for (i=0 to s-1)
if non-novel symbol
k o« k+l
target . arithmetic_decode_target (s-k)
arithmetic_decode (target,target+1, s-k)

for (j=0 to target)
if non-novel symbol
target « target+1l
return target

Figure 4.28: Pseudocode for order -1 decod

113

First. the frequency count contributed by the excluded symbols. k. is found. The

function target (t) is called, which returns an integer value that

lies in the ranze [Lh) that was used at the corresponding call to arithmetic encode ().
Then. ocode (1, h, t) s called, to adjust the decoder’s state variables to

reflect the changes made in the encoder during the corresponding call to

For the order -1 model. 1.+ and + can be trivially obtained from the decoded symbol

l'o account for the exclusion principle, the number of non-novel symbols will have
1o be subtracted accordingly. Whether a symbol is non-novel is determined from the
order U probability table. A symbol is considered as non-novel if its frequency count is
more than 0 for method A, C, and D, and more than 1 for method B. With exclusion

applied. the equation for 1. hand t are:

-3
sym +1 - 3
s - k
where.
= number of non-novel symbols preceding sym in the probability table
total number of non- novel symbols
The arithmetic decoder returns the value target sym-j. From this and the *

knowledge of which symbols were excluded. the actual symbol sym can be found by

adding the value of § to target.

43232 Order 0 and above decoder

Three set of pseudocodes are presented, each for escape method A. B and C (method D

is common with C), as shown in Figure 4.29, 4.30 and 4.31 respectively. Since no entny

is stored for the escape symbol in the probability tables. the values of . and

be found accordingly, a

encoder.

Method A:
30
k-0
for (i=1 to s){
if (freq(i] =0)
break
if (the i-th symbol was marked for
k = k+ freq[i]

}
if (cum_freq[(0]= k)
return escape

target.— arithmetic_decode_target (cum frez s
if (target<l)({
arithmetic_decode (0,1, cum_freq[0j-k+1i;
return escape
}
else(
for (sym=1 to cum_freq[sym]>target-1)
sym . sym+1
for (i=s to sym)
if i-th symbol was marked
je 3+ freqli]
for (sym = 1 to cu
sym ~ sym+l

arithmetic_decode (cum_freq(sym]---1
cum_freq(sym-1]-j+1, cum_:
return sym
}

Figure 4.29: Pseudocode for order 0 and above decoder in method A

First the total number of non-novel symbols. - is found based on the exclusion array. If

have to

summarized in Table 4.2 and 4.3 respectively. same as the

the value « equals to the total count . then an escape symbol is generated. without

calling the arithmetic decoder. mimicking the action taken by the encoder. Otherwise.

* decode target (v) is called. which returns an integer - 5o+ that lies in

the range [Lh) that was used at the corresponding call to arithmet ic

From the target value, a decision is made whether the decoded symbol is an escape
symbol or a normal symbol. If it is a normal symbol, then what the symbol actually is
needs to be found, based on the knowledge of which symbols were excluded from the

frequency count by the encoder. In any case, arithmetic decode (1, h,t) is called to

adjust the decoder’s state variables to reflect the changes made in the encoder during the

corresponding call to arithmetic_encode().

Method B:

§+-0
k-0
for (i=1 to s){
if (freq[i]=0)
break
if (the i-th symbol was marked for exclusion)
if (freq(i]>1)
k = k + freq[i]-1
}
e « i-1
if (cum_freq[0] = k+e)
return escape

target . arithmetic_decode target (cum_freq(0
if (target < e){
arithmetic_decode(0,e, cum_freq(0]-k)
return escape

}

else(
for (sym = 1 to cum_freq(sym]>target-sym)
sym « sym+1
for (i=s to sym)

if i-th symbol was marked for exclusioni
j— 3+ freq[i]-1
for(sym=1 to cum_freq(sym]>target+j-sym)
sym — sym+1

tic_decode (cum freq[sym]-j
freqlsym-1]-j+s
return sym

1, cum_fr

Figure 4.30: Pscudocode for order 0 and above decoder in method B

16

Method C, D:
-0
k-0
for (i=1 to s){
if (freq[i]=0)
break
if (the i-th symbol was =
k = k + freq[i]

}
e «i-1
if (cum_freq(0]=k)
return escape
target = arithmetic_c=--a:
if (target<e) {
arithmetic_decode ',=, -ir e -
return escape
}
else(
for (sym = 1 to curn
sym ~ sym+l
i to sym) {
if (the i-th
j= i+
for (sym = 1
Sym ~ sym+1

}

arithmetic_decode(z.r :re: - '
cum_freq(sym-1,- -2, <. fro; -.

return sym

Figure 4.31: Pseudocode for order 0 and above deceder in method C and D

4.4 Combined method of bitplane coding and PPM

This section describes the implementation that combines both bitplane coding and PPM
in a single compressor/decompressor. Since many functions are identical to those
described in previous sections, their description will not be repeated here. The main

differences are in the plane splitting/merging process and the file-level encoder/decoder.

44.1 Compression program

The front end and file-level encoder are described next. The symbol-level encoder

follows the respective methods, which have been explained in earlier sections.

4.4.1.1 Front end

The flow for the front end of the compression program for the combined method is
given in Figure 4.32. The steps are similar to those explained in the previous sections.

except for the plane splitting process.

Front end

Get source file name, /H, W and
compression parameters

v

Read source data into buffer array +
bit reduction

v

If bits per pixel >4. do plane splitting

v

Pass data to file-level encoder

Figure 4.32: Front end of compression program for the combined method

The plane splitting process for this method separates the bitplanes in two separate parts

as mentioned in Section 3.8. Figure 4.33 shows the pseudocode for the process.

The variable &+ o250 - gives the number of bitplanes for bitplane coding and is equal
to the bits per pixel (as found from the bitplane reduction process) minus 4. The
bitplanes are then extracted. followed by the planc for PPM. Note that if the bits per
pixel are equal to or less than 4 (ic the number of symbol. s < 16), the plane splitting

process will not be performed

number)AND 1

Figure 4.33: Pseudocode for plane splitting process

4.4.1.2 File-level encoder

The file-level encoder is responsible for managing the encoding of the file as a whole.
Two encoders. the bitplanc encoder and PPM encoder. are combined. Bitplane coding is *
performed. if required. followed by PP\, both operating independently, as shown in
Figure 4.34. Each of the blocks for bitplane coding and PPM is identical to the steps
shown in Figure 4.6, but with the header written once only. Bitplane coding is
performed on p-4 bitplanes. where p is the bits per pixel and p > 4. If p < 4, bitplane

coding is skipped and only PP\ is performed.

File-level encoder

Write header
to output file

v

Ifp>4,do
bitplane encoding for
plane 0 to p-5

}

PPM encoding Same as file-level
encoder for PPM

Same as file-level
encoder for
bitplane coding

Figure 4.34: File-level encoder for the combined method

442 Decompression program

As in the compression program, only the front end and file-level encoder is described.
The symbol-level decoder follows the respective methods, which have been explained

in earlier sections.

4.4.2.1 Front end

The program flow for the front end of the decompression program for the combined
method is given in Figure 4.35. The functions are similar to those explained in the

previous sections, except for the plane merging process.

The plane merging process merges the planes to obtain the symbol of p bits per pixel.
Figure 4.36 shows the pseudocode for the process. Each bit of the symbol is read from

the corresponding plane at the same pixel location. The bits are placed into their

positions in the symbol using shift operation and bitwise OR. Finally. the merged

symbol is written into the array ¢,

Front end

l7 Get compressed fil

‘ € name

| Call file-level decoder
to decompress the data

v

It bits per pixel >4,
do bitplane merging

v

Inverse of bit reduction I

L Write data to output file |

l Compare data with original |

Figure 4.35: Front end of decompression program for the combined method

=14

lanes-1)
> << 1)OR(buffer [p*H*W+i])
4)OR (buffer [p*H*W+i]AND 1111.)

Figure 4.36: Pseudocode for plane merging process

4422 File-level decoder

The file-level decoder is responsible for managing the decoding of the file as & whole
Since two separate encoders may have been used during the compression process. there
are possibly two separate bitstreams that need to be decoded. Mirroring the encoder
side, bitplane decoding is performed first, if required, followed by PPM. as shown in

Figure 4.37.

Each of the blocks for bitplane coding and PPM is identical to the steps shown in Figure
4.14. Of course, the file header information is read only once. If p>4. the tirst hitstream
is decoded using bitplane coding, followed by PPM for the second bitstream. 11 p < 4. it

means that there is only one bitstream, so only PPM decoding is performed.

File-level decoder

Read file header

v

If p>4,do] Same s filedlevel
bitplane decoding for ;ﬁmt "‘15 file-level
plane 0 to p-5 ccoder for

bitplane coding

l

PPM decoding Same as file-level
decoder for PP\

Figure 4.37: File-level decoder for the combined method

