Chapter 5:

Results and discussion

5. Results and discussion

The implementations were evaluated on the set of road map images. Fach file was

compressed and the resultant size recorded. The total compressed size of all the files
was computed and taken as the overall measure of compression effectiveness.
Parameters of the compressors were changed. where zpplicable. to obtain best possible
compression. Comparison between the methods were made. as well as with GIF as the
benchmark Section 5.1, 5.2 and 5.3 presents the results. for bitplane coding. PPM. and
a combined method, respectively. Section 3.4 compares the methods in terms of

compression effectiveness, memory requirement and exccution time

5.1 Bitplane coding

The images were compressed using the following neighbourhood templates:
1. Standard 1-norm — 10 to 16 bit templates
2. Standard 2-norm — 10 to 16 bit templates
3. JBIG default templates
a. 10-bit template
b. 13-bit template
c. 16-bit template
Reflected Gray coding was also applied and the results compared with the case where it”

was not applied.

Table 5.1 shows the result when the im.

s are compressed using bitplane coding for

shows the result with

various template types, without reflected Gray coding. lable 3

reflected Gray coding used.

&

‘PIOQ Ul UMOYS 1B [[BIIAO PUR 1] [OBD 10 SI NS ISIE] 445

$214q ur 3|1y passaIdwiod Jo 971§ 4

(arerdway Zo[g[1q-0 1 sueaw (-(| “a1e[dwa) uuou-z 11g-0| sueaw g-0] ‘are[dwa) wiou-| 1q-0 | suvaw [-(| :'32)

2dAj-4ap.0 :2dKy) aedwa) 10 UOHBRION 4

« 244 2ejdway

SOION
SSI8LI | vBTBLL | BOSOLI | ¥889LI | S6SLLI | LyEvLl | 60L9L1 | L19bL1 | 9z6TLl | vesvel | vanzen | zwsest | ovect [zoovet | viocsi | sestoi | soLoct j 0}
POVPT | POEVT | YOLYT | L6IVT | 88EPT | PISET | 8I€vT | OpIPT 10LET | 9€0VT | L6SET | 0€6£T 196€7 | TIOPT | SHLST | pSOPT | 9TTIST | Weroso0se
TI6PT | bS6YT | S6IST | 618K | ve8VT | L9EKT | L9LVT | 0TSkT | szive | vovvr | 8667 | Tvivz | vzzwve | TLIvT | 9S6ST | SLINT | BLEST | Wer(0s00su
0786 £8L6 8686 1866 6186 9086 £6001 1166 0bL6 6566 9196 SE86 11L6 £986 vl 0186 SRFOL | NWRIQ0S00sw
1€ Pl el LIl 9611 | L8601 68111 65601 8€801 €011 L8LO1 | 97601 1€801 L9801 LEELT £0601 | 6L601 WELYSE60LT
€LSL S6SL 9L 1TsL bLSL 1bSL 00SL LSTL £ThL 9€SL LLEL PovL PIEL 88EL £6SL 60tL 9Lrl WEI9SE60TY
9I8¢l 918€1 S06€1 1€9€1 P89€1 6EEEL 98bEl 80€El S61€l SSTEL | 9LOgE1 I€1€1 €LOET | 660€1 I¥LEL £80¢€1 BItEl Wer9ge60¢!
9568 1668 2668 1768 £888 09.8 s 6998 vr98 0sL8 8LS8 6658 8558 6958 £096 L098 0788 NRIYSE60L!
SLS8 LS8 | €698 SEPS SPS8 8LI8 8vH8 €LE8 0zz8 PIE8 818 1€28 SLT8 0S8 0.8 LST8 £8€8 MNEXQORO0Y
£0TI1 81Tl 9ECl £6011 LLITL 1LR01 6£011 L8601 | 61801 16801 £6L01 PL801 £T601 | 9€601 £6L11 S0011 S8I11 NEXOOPOOT
PET9 €979 0679 LY19 0029 S€09 €019 (40 6965 $009 1£65 196 PE6S 8165 LETY 8768 1109 NEIQ0+00t)
6stTl 8r9T1 1ozt 98STI £PSTI STHTL 6€£STI1 wtl OLETI | 96€T1 [44x4} 1EPTI | 65¥TI 90§T1 8Trel 609T1 14871 WRL[ES[SR
S198 8FS8 9£98 8Ev8 9858 vTrg 9058 SLE8 88¢8 9£58 09¢8 19¢8 pLY8 6£58 9££6 6098 6.88 WRELPSTPSP
Pzl 8911 SSTll £5011 [ke4]] pS601 IPITL | 96801 | LS801 78011 | 88LO1 | 89601 £2801 $S601 90611 09601 | LETII WEPS1FEY
| £EL8 0L98 088 bLS8 6.8 6LS8 0698 66v8 618 SEL8 £8€8 1198 1818 9598 | 0Ss6 0198 8768 Wer Sl beYq
_ ol _ 8801 95101 8EE01 15001 L9101 81001 6£201 Al 2686 98201 86101 S9€01 €LT01 | 61901 91501 61501 WEL009001"
,_ 91 _ 91 191 sl 1-s1 ot I-vl €1 €l I1-€1 x4 1-T1 1l =11 _ ol 0l ;_ 1-01

(3u1pod Kear) pajdayaL ynoyA) Suipod sueldyiq 1oy SHNSAY :[°S Qe L

9zl

‘PIOQ Ul UMOUS JJE [[BIDAO PUE 3[1] YIBA 10J SINSAI 1SIE 444

$214q U1 1) passaIdod jo dZIS 4y

(2w1dway ZoIgr 1q-0 1 Sueaw -1 “d1e[dwd) WIou-g 11g-(| sueaw -0 | ‘1edwa) wiou-| 11g-0] sueaw [~ :§-2)
2dA-4apa0 :2dK) 1e[dwa) 10§ UONIRION 4

120N
[oenst | [T0TIN | wesout | Seost | ILL T ezsoL T | TERCET | ELRSLI [€Y9LLI | SLESLT | LELOLI 6999LT [TEILLY [FISION [STORLT [SLTERT [ol

[Y T T T e N T S Y I I T T Y T S T T2 A AT T A R T T _._‘,.‘H” _ NS00SO

R Tee , vt Jorsed Dwnice Daisee | wozee | veone Ciozez | ezsne oz oot | ieid | eoses L oeere Trene | wstsu
NN IR T o e Dwwenn sg e Tezzen | eoen [ovi [osidn | oeici e e D weosiosa
st Dostst Dessst xSt Loorst ot T iast L aokei T oiir T [TatosT | RLOFL | RsE | 6Loft | SLLE oRctt | rrert T oweogyeoyl |

stoc et | o _ U N Irdeo " [scor T [can fooor [Teie [rLed osoc Tolie] wasveony
ootot [oztor | xezon _ ool T eotol | e Tovso | veie Touke” [1296 | Lrie [rzee T0Ze” [swsor Torze Toooor | owerogyenst m
ENSS lb s Lotss Lorss [axes Leas TDrers Do e ToosT | oms {vers [k [0S [oves [swis [stos | werasyoos |
oo LE6 [sewe | ctb [ozee” Disre Towe T lise [wvie v U Eire [osce | csse Trcre | vowor | oose | evco | seoooni |
.‘v.n_m_‘_J GELIT | ER8IL [RSSTE | 1ol | ey e __,.:__‘ KT [Tl 96l [man [wvzin [K:a.m. S ot | oweooroord

s1s9 [Reso Toxso [Ter0 [Tero” (ot [oseo (ko [wi [udy T[Om9 [ore [9609 | 9019 | olso [send | oty ot
09941 [OTLET IRCRT [T990T [6Lorl | orer | picer | CLOF0 | €CPRE | OgSET | COSFL | 9Rstl | 1Rl | S9Lri [ozooi _ olorl | rogst Do |
909 [80S6 [9L56 [LOF6 [Ts6 | sS€6 | OFPG | PG | 9S€6 | It | FIS6 | OFE6 | FLE6 | KRG | 9vl0l | LLt6 | 9s9e sirsp |

VI8TI [9LLTI | TEBTI | BE9TI | LYLTI | €6STI | T99T1 | LS¥Tl | GRPCI | 109T1 | VEPTT | FISTI | SLFCI | OFSTI | visel | T6ogl | kel . WESTED
TSI8 [vL08 | 9zT8 | €86L | SET8 [9L6L | OCI8 | T68L | 168L | 8PI8 | I6LL | BGGL | 89RL | GFOR | NGOX | LIOX | 0St§ | weriesirsd |
SPOTI | SSIEL | LL6TI [TLICI [Ov8TI [8L6TI [I88Z1 | SLOEI | $96T1 | OFLTI | §SOCI | SSOCI | ERICI | SLIEL | PGBEl | ITPEl | SLSE1 | WHOUYOORE |

[T T T T T T T O O I T O T T T O T e

wodA1 aredway _

(8uipod Kean) pajdapas yia) Surpod suejdyiq 10y SHNSAY :7°S AqEL

185

g 180
>
2
°
5
s
a
3
H
£
E
8 s
2

170

10 " 12 13 14 15 16
number of context bits —a— I-norm

—&— 2-norm
~ l-norm + gray code
—3—2-norm + gray code

Figure 5.1: Plot of file size versus number of context bits used

From the results several observations can be made:

1.

Figure 5.1 shows a plot of the file size versus the number of context bits used, for 1-
norm and 2-norm templates. Starting from the order 10 context, it can be seen that
the total size decreases until order 12. From then on, the total size increases again
when the order increases. In all cases, the 12-bit template gives the best overall
compression.

Figure 5.1 also shows that overall compression is better when Gray coding is not *
applied, for both 1-norm and 2-norm template. The 12-bit 2-norm template without
Gray coding gives the best overall compression with a total size of 172.124 bytes.
The performance for the JBIG2 templates is summarized in Table 5.3. The best
result is using the 13-bit template without Gray coding. giving the total size of
174.617 bytes. This is however not as good as the 172,124 bytes achicved by the 12-

bit 2-norm template.

Table 5.3: Summary of results for JBIG2 templates

T order T 0 13 [16
" Without gray coding | 187014 | 174617 | 178155
" it gray L:u[iing “Thorsia | 177431

180776

4. The original total size of the files is 3.080.740. The best result is 172,124 bytes,
therefore

pereentag,

rato - 100\ (172.124/3.080.740) = 5.6 %
The files have been compressed 1o only 3.6% of the original total size, representing
a reduction of 94 4%,
5. In GIF format. the total size is 303.052 bytes. Therefore,
percentage ratio = 100 x (172,124/305,052) = 56.4 %
The files have been compressed to 56.4% of the total size in GIF format,

representing a reduction of 43.6%.

The 12-bit 2-norm template gives the best compression for these images. It is however
difficult to explain theoretically why this is so. because the optimal template depends on
the geometric structures in the image (Ageenko, 2001), which for the images are
difficult to determine. We can only say that, based on the results this particular template
gives the best estimation of the symbols’ probability distribution of the test images®

compared with the other templates tried.

Gray coding does not improve the overall compression effectiveness. Thi

s because
the road map images do not contain regions with smoothly varying colours such as in a
continuous-tone image. In a continuous-tone image, the regions of smoothly varying

colours have neighbouring pixels which are close in value. By using Gray coding. two

different integers that are close together will differ by fewer bit positions compared 10
the normal binary representation (e.g. 127 and 128 differs by 1 bit position only in Gray
code. but differs by 8 bit positions in normal binary). This reduces the complexity of
cach bitplane, resulting in improved compression (Rabbani & Melnychuck. 1992). For
road map images, ncighbouring pixels may differ significantly in value, so Gray coding
is unable to guarantee the reduction of the complexity of the bitplanes. hence no

improvement to the overall compression.

5.1.1 Conclusion

It can be concluded that, for bitplane coding:

1. The 2-norm template gives better compression, with the best result when using 12-
bit context.

2. The use of Gray coding does not improve the overall compression

3. Compression using bitplane coding can achieve an overall reduction of 94.4%

compared to the original files, and 43.6% compared to the GIF files.

5.2 Prediction by Partial Matching (PPM)

The following characteristics of PPM were investigated:

1. Update exclusion — comparing effectiveness of single counting and full counting
2. Neighbourhood template type — comparing the 1-norm and 2-norm templates

3. Escape probability - comparing the methods A, B, C and D

4. Maximum order — comparing values of 1 t0 4

5. Frequency count scaling - various values when frequency count scaling is applicd

The next sections present the results.

5.2.1 Update exclusion

Single and fuil counting was compared. The escape methods A. B, C and D were used.
The other parameters were fixed to the following values:

1. 2-norm neighbourhood template

2 Maximum order = 3

3. Frequency count scaling value = 16384

Table 5.4 shows the results obtained. For each type of escape method, the best result for
cach file is marked in bold. As can be seen from the table, single counting gives better
compression compared to full counting (except in a single case) for all the escape
methods. This confirms the usefulness of applying update exclusion. For an explanation

of why update exclusion can improve compression, see Moffat (1990).

Table 5.4: Results for PPM, to compare single and full counting

' method A method B method C method D

file name | single full single full single full single full
al00600 | 8584 | 8628 | 8734 | 8788 | 8720 | 8727 | 8654 | 8674
" bSAISIT | 6525 | 6579 | 6653 | 6719 | 6646 | 6667 | 6560 | 6599
CS4IS41 [10826 | 10890 | 11043 | T1115 | 11031 | 11039 | 10928 | 10960
ds41s41 | 7651 | 7718 | 7809 | 7912 | 7794 | 7822 | 7717 | 7761
41541 [15392 | 15437 | 15614 | 15657 | 15604 | 15585 | 15497 | 15504
T UT00400 | 5382 | 5468 | 5488 | 5612 | 5467 | 5522 | sa12 | sasi
T 300400 | 9700 | 9736 | 9823 | 9873 | 9794 | 9808 | 9708 | 9738
Tna00400 | S647 | 5749 | 5783 | 5925 | 5756 | 5819 | 5683 | 5767 .
1309356 | 4767 | 4806 | 4849 | 4898 | 4866 | 4871 | 4805 | 4828

3 9186 | 9249 | 9298 | 9374 | 9292 | 9311 | 9226 | 9265

4552 | 4617 | 4645 | 4727 | 4631 | 4656 | 4549 | 4591
1309336 | 10500 | 10620 | 10699 | 10839 | 10658 | 10709 | 10566 | 10649

TTmi00s00" 7117 | 7310 | 7339 | 7634 | 7235 | 7369 | 7157 | 7316
nS00300 114303 | 14716 | 14893 | 15407 | 14625 | 14811 | 14387 | 14671
0300500 1 13916 | 14243 | 14424 | 14809 | 14215 | 14350 | 14033 | 12251
total l 134048 | 135766 | 137094 | 139289 | 136334 | 137066 | 134882 | 136045

5.2.2 Neighbourhood template

The standard 1-norm and 2-norm neighbourhood templates were compared. Fscape
methods A, B. C and D were used. The other parameters were fixed 1o the follow ing

1. Single counting

2. Maximum order = 3

3. Frequency count scaling value = 16384

Table 5.5 shows the results obtained. For each type of escape method. the best result for
each file is marked in bold. As can be seen from the table. the 2-norm template gives
better compression compared to the 1-norm template for all the escape methods. As
explained in Section 5.1, we can only say that the 2-norm iemplate 1s better at

estimating the probability distribution, but it is difficult to theoretically explain why.

Table 5.5: Results for PPM, to compare 1-norm and 2-norm templates

method A method B method C TmethodD !
file name | 1-norm | 2-norm | I-norm | 2-norm | I-norm 2-norm | I-norm | 2-norm |
400600 9456 | 8584 | 9600 | 8734 | 9595 | 8720 ?Eé‘f_'s f
b541541 8363 | 6525 | 8482 | 6653 | 8489 | 6646 8386 . 6360
541541 12361 | 10826 | 12570 | 11043 | 12569 | 11031 1243 ""”mo:s'f
ds41541 8888 | 7651 | 9046 | 7809 | 9029 | 7794 8917 7717
541541 [17061 [15392°[17272 | 15614 | 17275 | 15604 17147 15497 |
1400400 5853 [5382 5960 | 5488 | 5948 67 5889 s412
2400400 | 10395 [9700 | 10527 | 9823 | 10509 | 9794 10421 9708

1400400 5996 | 5647 | 6135 | 5783 | 6109 5756 6040 =

| 1309356 5870 [4767 | 5949 [4849 | 972 4866 012 4803
1309356 [10852 | 9186 | 10957 | 9298 \LWWT 92027 10000 9226
| k309356 | 5148 | 4852 | 5239 | 4645 so3q s
1309356 [11973 | 10500 | 12165 | 10699 12 T 10566
Tms00500 | 8893 | 7117 | 9106 | 7339 35T w07 s
nS00500 | 15288 | 14303 | 15853 | 14893 15608 14625 1535 43§
[0500500 | 15470 | 13916 | 159%6 | 14324 13776 14315 1550 14033
ol [151867 | 134048 | 154817 | 137099 1 154350 136338 153673 T'[Saxz}

*single counting, maximum order = 3, scaling - 16354

5.2.3 Escape method

Ihe escape methods A, B, C and D were compared. The other parameters were fixed to
the following values:

1. Single counting

2. Neighbourhood template type = 2-norm

3. Maximum order =3

4. Frequency count scaling value = 16384

lable 5.6 shows the results obtained. The best result for each file is marked in bold. As
can be seen from the table, method A gives the best compression in all cases except one.
Overall. the best compression is given by method A, followed by D, C and B. As noted
by Cleary & Witten (1984), it is difficult to justify the escape method theoretically, so

we can only say that the method A performs best for the road map images.

Table 5.6: Results for PPM, to compare escape methods

escape method
file name A B C D
ad00600 | 8584 | 8734 | 8720 | 8654
bS41541 | 6525 | 6653 | 6646 | 6560
541541 | 10826 | 11043 | 11031 | 10928
dsa1541 | 7651 | 7809 | 7794 | 7717
eS41S4T | 15392 | 15614 | 15604 | 15497
400400 | 5382 | 5488 | 5467 | 5412
2400400 | 9700 | 9823 | 9794 | 9708 .
h400400 | 5647 | 5783 | 5756 | 5683 |
309356 | 4767 | 4849 | 4866 | 4805
1309356 | 9186 | 9298 | 9292 | 9226
k309356 | 4552 | 4645 | 4631 | 4549
1309356 | 10500 | 10699 | 10658 | 10566

T ms00500 | 7117 | 7339 | 7235 | 7157
0500500 | 14303 | 14893 | 14625 | 14387
0500500 | 13916 | 14424 | 14215 | 14033

T otal 134048 | 137094 | 136334 | 134882

*single counting, 2-norm template. maximum order = 3. scaling 16354

5.2.4 Maximum order

Various values for the maximum order were investigated. The others parameters were
fixed to the following values:

1. Escape method A

2. Single counting

3. Neighbourhood template type = 2-norm

4. Frequency count scaling value = 16384

Table 5.7 shows the results obtained. The test was done until order 4 only. because for
orders larger than that, the increased memon requirements could not be met by the

computer on which testing was done.

Table 5.7: Results for PPM, to compare various maximum order values

maximum order

File name 1 R ‘ E]
400600 | 15959 | 10271 | 8383 | 7797 |
bS41541 | 12630 | 8843 6325 | 5482 |

c541541 | 20650 | 13317 10826 | 8648 '
dsa1sal 15950 | 9577
eS41541 | 24936 | 17657

4300

400400 | 11267 | 6806

2400400 | 18185 | 11770 8237
hd400400 | 11783 | 6894 | 1623
1309356 8553 | 6193 1395

309356 14119 | 11470
k309356 7208 | 3471
1309356 | 15863 12753
| 'm500500 | 14997 9aad
28690 16368 14303

20819 16766 13916 11973

otal | 230619 T 163803 134048 113523

*single counting. 2-norm template_escape method A. scaiing= 16384

Figure 5.2 shows a plot of the total size against the maximum order. As can be seen. the
higher the maximum order. the better the compression. This is because the larger
context used enables better estimation of the symbol probability (Salomon. 2000). The

maximum order of 4 gives a total size of 113,523 bytes.

file size [thousand byte
)
S I3 3 o N
s &3 8 8 8

N
53

o
5

o

2 3 4 5

maximum order
—e—PPVA

Figure 5.2: Plot of the total file size against the maximum order

5.2.5 Frequency count scaling

The effect of the value at which the frequency count scaling is done was investigated.
The others parameters were fixed to the following values:

1. Escape method A

2. Single counting

3. Neighbourhood template type = 2-norm

4. Maximum order = 3

5. Frequency count scaling value = 16384

Table 5.8 shows the results obtained. The best result for each file is marked in bold.

N1l

Fuoj poudisun 01 pagueyd a1am ([°7[¢'H UONIAS) 2jgni qoad wdd
umdNNS Yy Jo [/hayf wind pue [[ba.f skeire ayy 10§ 2dA1 2y1 “3A0QE PUB 9EGSY JO SaN[RA TUI[RIS 10J 1531 O]
"P10q UL UMOYS JJE [[BIIAO PUR J[1] LIS 10J SINSAI 1SA]

210N

[orrren Tozveet [orgren | 8rore [T9REET [[66LEE 1 |T06LEEN | 6T8EL1 [910ptl | orostl | ivoLEl 0
STovl [sTorl [aText [9Toct | 0061 [r6RET [ER8CI | BLSEI | SLREL | R06CI | 990rl | 0osonso |
YOLEL L O0Lelrovel | LLTEL ssTRL | beThl | BITRL | TOTRL il o] 0osousu

€0IL [o60L | 860L | 001L | ROIL | L91L [ovel. | oosoosw |

otlL i L

i : 0L | 860L | DO I AL
10SOL 1 10501 110501 | 10501 00s01 :.cw.:_‘ 00sO1 | 66F01 | 96101 “v.:..c_ _ rorol | L9501 9stootl |
Lroor [roor | test [oxsr | Tsse _.,:v,.. s resy orsk forsy Tee9r [oror | gsvoory |

ssio [ol “[ooe | evte [s126 96 | oote | osveoet |

8810 88106 8810 LR16 9%l

- '

| 88LY 88LP E8LY LLLr

SS9S [S95 [ss9s | 0s9s | evos [6€9s [vggs €96 [0£9s [S€9s [s9s | eeLs | ooroor
60L6_ | 60L6 | 60L6 | 8OL6 | 00L6_ | PL96 | 8596 | br96 | 9296 | 8096 | s856 | 096 | 00rOurT
S8ES | SBES | SRES | PES | CBES | PLES | 89€S | 9965 | €9€S | 9965 | 68€S | oLbS | 00RO
PYPST | bpbSi | IcbS| | LIpSI | Tes| | S9€S| | €SESI | SPESI | SPESI | €9€SI | 6LbSI | LOSST | Irsitsd
S69L | S69L | IL9L | 099L | 1S9 POL | Ov9L | 9SOL | TL9L | 90LL | 9s8L | tel8 | Itsirsp
€9801 | €9801 | €5801 | ¢v801 301 801 | 81801 | 6¢801 | 19801 | €£801 | 9TOI1 | SOPIT | 1¥SIpsd
Tv99 [Tv99 | 165 €559 S 0S9 | 80S9 | 1759 | 6659 | 6859 | S99 | €SIL | IpSivsq
6658 | 6658 | 965 0658 8 | 9Ls8 | oLS €LS8 | LLS8 | v8S8 | €98 | 08L8 | 00900%®
88TYTS | vIT9T | 96559 | 89LTE | ¥8E91 | 618 | brl9 | 960 | TLOE Y0Z | ve0l | Tls | sweuay
an[eA BUI[edS JUN0d b

oL e9Lr [99k OBl | o8c [1T8P [Lot [s9ls | usvoout

=|v|o

sanjea Suifeas yunod L>uanbaay snorrea asedwod 03 ‘I Jd 40J SHNSIY :8°S dqeL

The total file size is plotted against the scaling value in Figure 5.3 for clarity. As can be
seen, the lower the value that is used. the better the compression. until a certain point.
For the values tested, 4096 gave the best compression overall. At less than 4096, the

total file size increase again.

It is noted that, at the scaling value of 4096, the total file size is 133,790 bytes, while at
the scaling value of 524,288 the total file size is 134.446 bytes. The reduction in size is
only 134,446 — 133,790 = 656 bytes. This means that using a small scaling value
improves the compression by only about 0.5% at the most. However, when the count
scaling value is small, count scaling is performed more often, which may cause an
increase in execution time. Since the improvement in compression is quite small. the

tradeoff needs to be considered when deciding the value for count scaling.

Frequency count scaling helps the model to adapt more quickly to the changing symbol
probability distribution (Moffat, 1990). Since count scaling has a small effect on the
compression effectiveness here, it can be said that the symbol probability distribution is

quite non-varying throughout the road map image.

15— —

J

138

1375

137

1365

136

1355

file size [thousand byt

1345

134

1335 L - -
100 1000 10000 100000 1000000

frequency count scaling value —e— PPMA

Figure 5.3: Plot of the total file size against the scaling value

5.2.6 Best settings
Based on the best settings above. the size of the compressed files is shown in Table 5.9
(PPM maximum order = 4). The ol file size is 113.449 bytes, compared with the
original total size of 3.080.740 bytes. Therefore.

percentage ratio 100 x (113.449/3,080,740) = 3.7 %
The files have been compressed to only 3.7 % of the original total size, representing a

reduction 01 96.3 %o.

In GIF format. the total size is 303.032 bytes. Therefore,
percentage ratio = 100 x (113,449/305,052) = 37.2 %
The files have been compressed to 37.2% of the total size in GIF format, which

represents a reduction of 62.8 %.

Table 5.9: Results for PPM using best settings

' | PPM
PPM variable

file name order =4 order
2400600 7794 7794

bs41541 5489 5489

i .
| maximum | max.
|
i

[eSAIsAT | 8667 8667
TdsaIsa 6074 6074
eSAISAT | 12522
“FH00300 | 4290
" 4100300 8188
T ha00300 4611
1309356 | 4780

: 9200

m300500 6011
Tn300300 12245

ICE

PERMISTAKAAN UNIVERSITI MALAV*

As shall be discussed in Section 5.4.2. the memory requirement for PPM becomes very
large when the number of colours in the image increases. One way 10 constrain the
memory requirement is to use a smaller maximum order value when the number of

colours increases.

An example is shown in Table 5.9 (PPM variable maximum order). where the
maximum order of 4 was used for files 400600 to h400400, while the value 3 was used

for files 1309356 to 0500500.

In this case, the total file size is 121,860 bytes. Therefore
percentage ratio = 100 x (121,860/3,080,740) = 4.0 %
The files have been compressed to only 4.0% of the original total size. representing a

reduction of 96.0 %.

In GIF format, the total size is 305,052 bytes. Therefore,
percentage ratio = 100 x (121,860/305,052) = 39.9 %
The files have been compressed to 39.9% of the total size in GIF format. which

represents a reduction of 60.1 %.

5.2.7 Conclusion

From the results above. it can be concluded that:

1.

The best overall compression was achieved using escape method A. with the 2-norm
neighbourhood template.

Update exclusion was confirmed useful in improving the compression

The larger the value of the maximum order, the better the compression. However,
for the experiments done. values up to 4 only were successfully tested, which gave
the best compression overall compared to smaller values.

Reducing the value at which frequency count scaling is done improved compression
performance (until a certain value), but the improvement was, at the most, only
0.5% (at the value of 4096 for PPM with escape method A).

Compression using PPM achieved an overali reduction of 96.3% compared to the
original files. and 62.8% compared to GIF files, when the maximum order of 4 was
used to compress the files.

The maximum order can be varied if the memory requirement has to be constrained.

In this

the compression effectiveness is slightly worse. For the example given,
an overall reduction of 96.0% was achieved compared to the original files, and

60.1% compared to GIF files.

139

5.3 Combined method of bitplane coding and PPM

The combined implementation is another attempt to constrain the minimum memon

requirement for the probability tables in PPM. In this method. PPM is used to compress

the 4 lowest bitplanes, while bitplane coding is used for the rest of the bitplanes. The

best settings from the results of Section 5.1 and 5.2 were used:

1. For PPM, the settings were: escape method A. 2-norm neighbourhood template
type, maximum order of 4, single counting and frequency count scaling at 4096

2. For bitplane coding: 12-bit 2-norm template, without applying Gray coding.

The results obtained are shown in the Table 5.10. The compressed tiles™ total size for
the combined approach is 123,474 bytes, compared with the original total size of
3,080,740 bytes. Therefore

percentage ratio = 100 x (123.474/3.080.740) - 4.0 %
The files have been compressed to only 4.0% of the original total size. representing a

reduction of 96.0 %.

In GIF format, the total size is 305,052 bytes. Therefore.
percentage ratio = 100 x (123.474/305.052) = 40.3 %
The files have been compressed to 40.5% of the total size in GIF format. which

represents a reduction of 59.5 %.

5.4 Overall comparison of the methods

In this section, the three methods implemented are compared with cach other. Three
important issues for a practical compression scheme are addressed: compression size.

memory requirement and execution time.

140

Table 5.10: Best results for the various methods

| PPM
PPM variable
file name bilp[ane max. order max.

S coding =4 order bi

1 ad00600 10286 7794 7794 7794

2 b541541 8383 5489 5489 5489
I 541541 10788 8667 8667 8667
4 d541541 8360 6074 6074 6074

B e541541 12372 12522 12522 12522
T 400400 5931 4290 4290 4290
] 2400400 10793 8188 8188 8188
s hd00400 3182 4611 4611 2611
9 1309356 8578 4416 4780 5705
10 1309356 13076 7870 9200 8028
[k309356 7377 4100 4531 4677

12 1309356 10787 9214 10499 10813
13 m500500 9616 6011 7098 7592

14 1500500 23998 12245 14234 15817
15 0500500 23597 11958 13883 13207
total 172124 113449 121860 123474

5.4.1 Compression size

The results for each method from Sections 5.1, 5.2 and 5.3 are used to compare the
compression effectiveness of the methods. The best results are summarized in Table

3.10. For PPM, two sets of results are given, one for maximum order of 4, another for

variable maximum order (as in Section 5.2.6).

Based on Table 5.10, the compressed file size for each file is plotted in Figure 5.4 for

the various methods. From the graph, it can be seen that:

1. PPM (with maximum order of 4) consistently achieved the best compression for all

the files.

&)

For files 1-8, the combined method achieved the same result as PPM (with
maximum order of 4). This is expected since these files have the number of colours
cqual to or less than 16, so only PPM was actually applied. For files 9-15, the
combined method is slightly worse than PP\,

The combined method was slightly worse overall compared to PPM variable
maximum order. For files 1-8. the size is the same. for the same reason given in (2).
For the other files, PPM variable maximum order gave better results, except for files
10 and 15.

Bitplane coding did not achieve as good compression as the other two methods for
all the files, except files 5 and 12. For file 5. it is the best, while for file 12, it is

better than the combined method.

N
o

file size [thousand bytes]
S
&

75

2s b — S— S

—e— bitplane
—-— Hgnmax order =4

—— PPMvar. max. order
—— combined

Figure 5.4: Plot of compressed file size of cach file

10

With regards to the overall compression. the following summary can be made:
1. Bitplane coding - the total file size was reduced to 172.124 bytes. Compared to GIF,

an overall reduction of 43.6% was achieved.

)

PPM with maximum order of 4 - the total file size was reduced to 113,449 bytes.

Compared to GIF, an overall reduction of 62.8 % was achieved.

3. PPM with variable maximum order - the tota! file size was reduced to 121,860
bytes. Compared to GIF, an overall reduction of 60.1% was achieved.

4. Combined method — the total file size was reduced to 123,474 bytes. Compared to

GIF, an overall reduction of 59.5% was achieved.

PPM achieved the best compression, followed closely by the combined method.
Bitplane coding did not achieve as good compression as these two methods, but its size
reduction was still better than GIF. Therefore, all three methods were able to compress

the road map images, and compared to the GIF file format, does it more effectively.

5.4.2 Memory requirements

For the methods implemented, the demand for memory space is dominated by two
items:
1. The buffer to store the data while performing compression and decompression

2. The probability tables used to store the models

The minimum memory requirement for each method (using the best results setting)
when compressing or decompressing a file can be calculated as following:
1. Bitplane coding

a. buffer size = image height x width x number of bitplanes

b, probability tables size = size of cach probability table X number of contexts

N2 16384 byies
2. PPM
a. buffer size = image height x width
b. probability tables size - depends on the maximum order and number of
colours used in the image (see Appendix D).
3. Combined method
a. buffer size ~ image height x width x (1 + number of bitplanes for bitplane
coding)
b. probability table size
® 11 the number ot colours < 16, see Appendix D
o it the number of colours >16, the size of the probability tables is
7.060.405 bytes (see Appendix D, maximum order = 4, number of
symbols = 16). This space can also be used by the probability tables

of the bitplane coder. since they are not required at the same time.

Table 5.11 shows the minimum memory requirements for compressing each file.
Several observations can be made:
1. For bitplane coding. the size of the probability tables is fixed to 16,384 bytes. The

size of the buffer becomes the dominant factor. The size of the buffer depends on

the im

dimensions and the number of bitplanes (which is determined by the

number of colours in the image). However, for large images, this should not be a
problem. because the implementation can be modified so that a fixed buffer size is
used. Portions of the data can be read incrementally to the buffer for the
compression process. instead of reading all the data at once (the sacrifice is. of

course. some additional complexity).

| SOr09SL S0P090L 00000S | OVSILLY 0ps1Tsy 0000ST 6E8VLEIEI 6E8PTIIEL 0000ST 8€9971 P8E91 0000ST I 0050050
SOP09SL S0P090L 000005 | STSE169 STSE999 0000ST L66T8YEIT | L66TETEIT | 0000ST +¥8€9971 PRE91 0000sT1 00S00SY
SOP09SL SO0P090L 00000S ! O8LTLLT 08LTTST 0000ST $S961€€9 £59690€9 0000ST $8€9971 PRE91 0000ST1 00s00sW
€1708TL S0P090L 80002 | £T6TS0E 616Th6T 00011 6S09799L $S09159L 00011 P0¥99S P8E91 0T00§S 9SL60t1
€1P08TL SO0P090L 8000TT | 6T€6STT STE6VIT 00011 £56£6915 6V6£8S1S $0001 1 P0¥99§ P8E9L 0T00§$ 9560

| C1r08TL S0P090L 80007 | SP8EVEI YPRELTI 00011 6S80989C SS80SL9T $00011 +0v99$ P8E9L 0200SS 95£60¢"

| EIP08TL SOP090L 80002T 6LLLOS GLLL6S 00011 L900L9T1 £90095T1 $0001 1 0¥99S +8€91 0T00SS 9SL60L!
610Tr8E | 610T89€ | 000091 | 610TH8E 610789¢ 000091 610TH8€ 610789¢ 000091 $8£9S9 P8E91 0000t9 00r00tY
LI81061 LISIPLL 000091 | L181061 LISIPLI 000091 L181061 LI181PL] 000091 8€959 P8E91 0000+9 00r00T
SSPEOEL SSpeEvll 000091 | SSFEOEL SSPEPIL 000091 SSPEOE! SSreErll 000091 P8E9S9 PREY1 0000+9 00F00t!
86vPE0T LISIPLL 1896T | 86vPE0T LI8IVLL 18976T 864PE0T LISIPLL 189267 BOIL81I FREY1 PTLOLLL 1FSIFsd
P8L098T £0189ST 189T6C | $8LO9ST £0189ST 189T6T $8L098T £01895T 189767 B01L811 PREY1 +TLOLLL Irsirsp
9LSSPYS S68TSIS 18967 | 9LSSPES S68TSIS 189767 9LSSHYS S68ZS1S 189767 801L811 P8E91 YTLOLLL 1FS1Sd
9£19¢€t1 SSPEPIL 189T6Z | 9€19¢€r1 SSPEvLl 189767 9E19¢€v1 SSpeEpil 189767 801L811 8€91 +TLOLIL I+S1+S9
6LPSLY 6LYSEY 0000+T 6LPSLY 6LYSEY 0000vT 6LYSLY 6LYSEY 0000vT P8EIL6 891 000096 | 00900t®
..,...__MH__ 1pnq 1101 21qe1 ‘qoxd 1ayng €101 aiqer-qoxd | 1apng 2101 “__“m sayng aweu a1

POYIaW PauIqUIod

(Japo "Xew 3|qeLeA) Wdd

(= 49pJ0 "xew) Wdd

Suipos aueidiq

SPOYJaW SNOLIEA 3Y) 10j S)UIWAIMbas Lrowdw wnwiuiw pajende) (1S qeL

o

For PPM. the size of the probability tables is the dominant factor. With the
maximum order tixed at 4. the memory size required becomes enormous when the

number of colours in the image increas

At 32 colours (e.g. file n500500), about
213 Mbyies of memory space is required

For PPAT when the number of colours increases, the value for maximum order can
be reduced to limit the memory requirement. For the example shown. the memory
requiremant is constrained to less than 7 Mbytes for an image containing 32
colours. However. the compression effectiveness is slightly reduced, as mentioned
in Section 3.4.1.

For the combined method. the probability table is also the dominant factor.
However. unlike PPM. the size of the memory required for the probability tables is
bounded to about 7 Mbytes. This is because when the number of colours exceeds
16. the additional bitplanes are compressed using bitplane coding, whose
probability tables do not require as much memory, and can share the same
memony space since both coder’s operate independently. The sacrifice is slightly

poorer compression effectiveness, as mentioned in Section 5.4.1.

As a summary. bitplane coding has the smallest memory requirement. PPM has the

most. especially when the number of colours increases and the maximum order is fixed.

It the maximum order is reduced when the number of colours increases, the memory

requirement can be constrained. The combined method also places a bound on the

memon requirements even though the number of colour increases.

16

5.4.3 Execution time

Although the implementations were not optimized for speed. in terms of both the

program coding and compilation, it would be useful to have a rough comparison of the

different method’s execution time. The compression and decompression time for cach

method was measured for all the files. A Pentium 4 1.8GHz computer with 192 MB

RAM memory was used. The C language’s clock() function was used in the program 1o
ry guag prog

measure the time between the start and end of compression/decompression.

Three measurement samples were taken for each file and the average computed. The

results are shown in Table 5.12 and also plotted in a graph. for both compression

(Figure 5.5) and decompression (Figure 5.6).

Table 5.12: Compression and d

ession time (in

seconds)

compression time [s]

decompression time [s] '

1

PPM | PPM PPM | PPM |
file name bilpllane max. var. | combined bilplfanc max. var. . combined .
coding | order = | max. method | coding | order - | max. | method
4 order 4 order |
1| 400600 | 0240 | 0579 | 0579 | 0604 | 0161 | 0579 0579 0378
2| bsaisar | 0281 | 0729 [0729 | 0755 | 0195 | 0729 0729 0730
3| cs41541 | 0281 | 0.890 | 0890 | 0912 | 0195 | 0.890 0890 = 0.932
4| dsa1sal | 0281 | 0776 | 0776 | 0823 | 0188 | 0776 | G776 0807
5| esalsal | 0276 | 078 | 0.786 | 0807 | 0.198 | 0.78 | 078 0802
6| 400400 | 0156 | 0427 | 0427 | 0422 | 0109 = 0427 0427 0433
7| 2400400 | 161 | 0453 | 0453 | 0474 | 0115 | 0453 0453 g4a3
3| h400400 | 0161 | 0510 | 0.510 | 0516 | 0115 | 0510 . 0510 0 i
9| 1309356 | 0141 | 0641 | 0266 | 0578 | 0094 | 0625 0266
10| 309356 | 0046 | 1171 | 0276 | 0547 | 0010 | 1318 0287
1| k309356 | 0141 | 1495 | 0297 | 0558 | 0091 Toxs 0 08
12| 1309356 | 0135 | 1985 | 0323 | 0609 | 0.104 Toss 039
13| m500500 | 0281 | 2.016 | 0646 | 0901 | 0219 S 065 aom
14 | 0500500 | 0292 | 34370 | 0672 | 0938 | 0219 47302 07a0 092
15 | 0500500 | 0297 | 12.620 | 0636 | 0952 | 0218 18711 0688 04
total 3270 | 59447 | 8265 | 10375 | 2329 <x06 10512 |

2000

1000

compression time [s]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

file —e— bitplane
o i (max. order = 4)
-—x—PHd vanable max order)
—r— C ined

: Compression time for each file

4500 e ——

4000

3500

3.000

2500

2000

1500

decompression time [s]

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

" —e—bitplan ‘
file T8 PR (e order =4)

—x—PHvA var. max. order)
—a— combined

Figure 5.6: Decompression time for each file

For PPN with fixed maximum order of 4, the files 14 and 15 took a relatively long time

o compress and decompress, and are not shown in the graph. This is because. for these

files. the memory requirements are larger than the physical memory available in the

computer. Virtual memory had to be used, where the hard disk drive’s storage space
was used as random access memory. Reading from and writing to virtuei memorn on
the hard disk (a condition called hard disk “trashing’) drastically slowed down the

program’s execution.

It can be seen from the results that:

1. Bitplane coding had the fastest execution time. Each file was compressed and
decompressed in less than 0.3 seconds.

2. The execution time of PPM and the combined method were similar for files 1-8.

3. For files 9-15, PPM with a fixed maximum order of 4 became increasingly slower

than the other methods. PPM with the variable maximum order was tasier than the

combined method.

As a summary, bitplane offers the fastest execution time. at least two times faster than

PPM and the combined method.

5.5 Summary

All the three methods have been tested and their compression performance evaluated.
T'heir compression parameters were adjusted to obtain the best possible compression.
The results proved that the methods were able to compress the road map images. They
were able to do so more effectively when compared to a commonly-used file format,
GIF. Besides compression effectiveness. other practical issues such as memory
requirement and execution time were investigated. As often is the case. there is a

tradeof between these factors.

19

