Chapter 6:

Conclusion



6. Conclusion

As a conclusion to this dissertation report. an overview of what have been accomplished
is presented. A summary of the work accomplished and results are discussed in Section

6.1. Suggestions for future work are presented in Section 6.2

6.1 S y of work d and results

Lossless compression of road map images was the focus of this dissertation. The use of
a statistical technique called arithmetic coding with adaptive context-based statistics

modeling to compress the road map images was investigated.

Arithmetic coding can be divided into two parts. the model and the coder. For a given
model, arithmetic coding will give close to optimum compression. As pointed out by
Moffat, the coder portion serves as an “engine™ for the compression system, while the
modeling is the “intelligence™ which drives the system  (Moffat er al., 1998).
Improvements to the model will yield improvement to the compression effectiveness, in
terms of reduced size of the compressed data. Improvements 1o the coder are mainly
concerned with the compression efficiency. that is. a reduction in time or memory
usage. As such, the implementation focused on the modeling portion. For the coder, the
arithmetic coder implementation by Moffat was incorporated as the engine of the

compression program.

Two different approaches to adaptive context maodeling were used. bitplane coding and
PPM. Implementation was suceesstully done using the € programming language.

ces of various sizes and

Testing was performed using a set of fifieen road map im

colours. Table 6.1 provides a summary of the results in terms of the total file sizes.



Table 6.1: Comparison of total file sizes (in bytes)

. ~IE (G . PPM PPM .
original GIF (image | bitplane . combined
; max. order | variable
raw data data only) coding o method
=4 max. order

L 3.080.740 305,052 172,124 113,449 121,860 123,474

In bitplane coding, the image was decomposed into individual bitplanes, which were
then compressed separately as binary images using a binary arithmetic coder and fixed
context modeling. Bitplane reduction was applied to minimize the number of bitplanes
that need to be compressed. Several types of neighbourhood templates were used to find
the context. It was found that the order-12, 2-norm template gave the best overall
compression results, as far as the set of test images were concerned. Compared to the
original raw data, a total file size reduction of 94.4% was achieved. Compared to GIF, a
commonly-used file format, the total file size reduction was 43.6 % A possible
enhancement using reflected Gray codes was also tried, but this failed to yield a better

compression overall.

The second method investigated was PPM, where variable order context modeling was
used together with an arithmetic coder. In PPM. the compressor initially attempts to
encode a symbol using the predefined maximum order. If is fails to do so, an escape
symbol is encoded and a lower order is tried. The rationale for this is that during the
carly stages of compression, the higher order statistics have yet to become reliable, and
thus the lower order statistics are used (Cleary & Witten, 1984). One issue with PPM is
the probability to assign to the escape symbol. Several types of escape method were
investigated, namely method A. B. C and D. It was found that method A gave the best
compression overall for the set of images, followed by method D. C and B. Among the
two types of neighbourhood templates that were used. the 2-norm template gave the

better result.



Several other enhancements for PPN were also tried. The effectiveness of update
exclusion was confirmed based on the test resuits. For the frequency count scaling
value, it was found that reducing the value improved the compression only marginally.
A small count scaling value (4.096) when compared to a very large value (524,288)
yiclded only a total size difference of 0.3%. In fact. if the value is made smaller. at some

point the compression effectiveness will start 1o sufter.

As far as the maximum order is concerned. it was tound the larger the value, the more
effective the compression. Using a maximum order of 4. and the best settings obtained,
PPM was able to achieve a total file size reduction of 96.3% compared to the original
raw data. Compared to GlII. the reduction achieved was 62.8%. PPM therefore
compressed the files more effectively than bitplane coding. Both, however, proved more

effective than GIF.

The problem with this implementation of PPM is the large amount of memory space
required to store the probability tables. This is because arrays were used for the tables.
At the maximum order of 4. the memory requirement becomes enormous when the
number of colours in an image increases. For example. when the number of colours is
32, about 213 Mbytes are required. compared to abut 7.1 Mbytes when the number of
colours is 16. If the memory space required is more than the system’s physical memory,

then hard disk trashing occurs. which drastically slows down the program.

Two attempts were made to constrain the memony requirement when using PPM. The
first is to simply use a smaller value for the maximum order when the number of colours
increases. For example. when the number of colours is up to 16. the maximum order of

4 is used, and when it is between 16 1o 32. the maximum order of 3 is used instead. This



constrains the memory requirement to about 7 Mbytes. The resulting overall
compression was only slightly worse than PPM with a fixed maximum order of 4. and

still significantly better than bitplane coding. as shown in Table 6.1.

The second attempt to constrain the memory requirement of PPM is to use a combined
method, where bitplane coding and PPM is used to compress different planes separately.
This approach taken is unique and never tried before. As far as bitplane coding is
concerned, the memory requirement for its probability tables is relatively small.
Therefore, the following scheme was tried. The best settings found for both methods
were used. If the number of colours is more than 16, bitplane coding is used to compress

the additional bitplanes. If it is less than 16, only PPM is used. This also constrains the

memory requirement to about 7 Mbytes. The g overall pression is.
unfortunately, slightly worse than the variable maximum order PPM. The set of road
map images contain images of up to 32 colours only. It would be interesting to compare
the results with the variable maximum order PPM when used for images with a larger

number of colours (33 to 256).

For execution speed, only a rough comparison was made since the program
implementations were not optimized for speed. It was found that bitplane coding was at

least twice faster than PPM and the combined method. «

As a summary. the implemented methods were able to compress the road map images.

and they did so more effectively compared to GIF.



6.2 Future work

Several su

stions of possible future work and improvements are listed below:

1. The use of arrays to store the probability tables in PPM incurs a large requirement
for memory space. Previous work in text compression using PPM empioycd data
structures such as hash tables. lists or trees (Cleary & Witten, 1984; Moffat, 1990;
Howard & Viter. 1992). The possibility of using such data structures can be
investigated for the case of image compression. However, when using such data
structures. the execution speed is expected to suffer, so the tradeoff can also be
investigated.

2. The use of the combined approach can be investigated further for the case of map
images containing a larger number of colours (33-256) compared to the existing set
of images. Although the compression suffers a little. this approach sounds attractive
because the memory requirement is constrained without requiring the use of special
data structures mentioned in (1).

3. More sophisticated escape methods for PPM, such as PPMX (Witten & Bell, 1991)
and PPM* (Cleary ef al.. 1995). can be tried or other escape mechanisms can be
devised for road maps images.

4. In this implementation. the escape symbol was not included in the probability tables.
Instead. its contribution 1o the symbol probability was calculated explicitly when the
function call w0 the arithmetic coder was made. In hindsight, perhaps it is better l'o
create an entry for it in the probability tables, although the case for this is not quite

clear.



Appendix A: Road map images

btained from the websites indicated in Table 3.10 on 3

Note: All the images were

February, 2003.

400400 2400400 h400400



0500500




Appendix B: RAW and JASC-PAL file formats

RAW File Format

The RAW file format (Laterre, 1998; Graphics Formats Specifications. undated) is a
flexible format that can be used to transfer files between different applications and
platforms. Unlike other formats, a RAW file has no header information (such as width.
height, etc.) to describe the data. The details must be supplied by the user in oraer 10
read the data. The content of a RAW file is just the pixel data. in the case of images. it
consists of a stream of bytes describing the colour information in the file. Fach pixel is
represented by a binary-coded number. Paint Shop Pro allows a file 1o be saved in either

8 or 24 bits per pixel, depending on the number of colours in the source tile.

JASC-PAL Palette File Format
A palette file is used to store the colour table of a palette image. Paint Shop Pro uses its
own JASC-PAL format (Jong, undated; JASC Palette File Format. undated). The file is

an ASCII text file. The description of each line in the file is shown in Table B.1.

Table B.1: JASC-PAL palette file format

[ Line Number Description

[ Contains the string ‘JASC-PAL’ ' b
2 Contains the string *0100° .

3 Indicates the number of palette entrics inthe file

4 onwards Each line corresponds to er[;a]cuc Ef{lr'\A I starts with the value for

the red component, then green. then blue. The values are separated

by single spaces. so each line has a total of 2 spaces. The palette

entries continue until the end of the file.




Appendix C: Calculation of GIF file’s image data size

Figure C.1 shows the structure of the GIF file (CompuServe Inc., 1990).

6 bytes Header
7 bytes Logical screen descriptor
768 bytes Global
paleite
table
10 bytes Image descriptor
1 byte 1.7ZW minimum code size
| byte Sub-block size
. Sub-block repeated as
up to N
many times as necessary
254 bytes Image data bytes
: Image
i data
i portion
|
1 byte Block terminator
1 byte Trailer

Figure C.1: Structure of a GIF file

I'he compressed image data is divided into sub-blocks, where each sub-block is up 0
255 bytes, including a byte to indicate the sub-block’s size, i.c. each sub-block has 254

data bytes, except the last sub-block, which may be less than 254 data bytes.

I'he size of the image data portion of the GIF file is calculated as following. Let

denote the total file size. The size of the non-image data portion is altogether 794 bytes.



The number of sub-blocks, b, is given by

b =[(t-n)255]

where Irx-| denotes the smallest integer equal or greater than x. Fherefore. the size of

the image data is given by f— 794 — b. Table C.1 shows the list of test images GIF file's

size and the calculated image data size.

For example, if the GIF file is 20,085 bytes. b = 76. The image data size is thus 20.085 -

794 -76 = 19,215 bytes.

Table C.1: Test image GIF file size

file name file size image data
[bytes) size [bytes)
a400600 20.085 19215
b541541 17.767 16.906
541541 25.727 24835
d541541 20.483 19611
541541 31353 30439
1400400 13743 12.898
2400400 21,597 20.721
h400400 14.967 14017
1309356 11.169 10.334
1309356 17.908 17036 |
k309356 9.730 T 8900
| 1309356 | 19.763 18804 |
m500500 | 20734 19.861
0500500 | 35.636 34.723
| 0500500 37488 36.530




Appendix D: Memory requirement in PPM

I'he memory requirement for the probability tables in this implementation of PPM is

given by the Table D.1 below (in bytes).

Table D.1: Memory requirement for probability tables in PPM

maximum order

no. of’
symbols 0 1 2 3 4

3 23 92 299 920 2783

4 29 145 609 2465 9889

5 35 210 1085 5460 27335
6 41 287 1763 10619 63755
7 47 376 2679 18800 131647
8 53 471 3869 31005 248093
9 59 590 5369 48380 435479
10 65 715 7215 72215 722215
11 71 852 9443 103944 1143455
12 77 1001 12089 145145 1741817
13 83 1162 15189 197540 2568103

14 89 1335 18779 262995 3682019
15 95 1520 22895 343520 5152895

16 101 1717 27573 441269 7060405
17 107 1926 32849 558540 9495287
18 113 2147 38759 697775 12560063
19 119 2380 45339 861560 16369759
20 125 2625 52625 1052625 | 21052625
21 131 2882 60653 1273844 | 26750855
22 137 3151 69459 1528235 | 33621307

23 143 3432 79079 1818960 | 41836223
24 149 3725 89549 2149325 | 51583949

25 155 4030 100905 2522780 | 63069655

26 161 4347 113183 2942919 | 76516055

27 167 4676 126419 3413480 | 92164127

28 173 5017 140649 3938345 | 110273833
29 179 5370 155909 | 4521540 | 131124839
30 185 5735 172235 5167235 | 155017235
31 191 6112 189663 5879744 | 182272255

32 | 197 | 6501 208229 | 6663525 | 213232997 |




The computation is done as follows. Let
s = number of symbols (colours)

m = the maximum order

The C compiler allocates 1 byte for the vanable of type char and 2 bytes for the variable

of type short int. So, the size of cach probability table is 65 +5 bytes, as shown below:

array tpe i ufm,\ size b):bs
Sfreq[ ] ; shortint -1 N
cum_freq[ | P shortint -1
char_to_index( ] char s s
index_to_char([] | char | s+l s+1
total: 6545 |
! R —

The number of possible contexts for each order is given by s°, where ¢ is the context

order. Therefore. the memory required for the probability tables is given, in bytes, by:

> (65+5) 5"
1=0

162



