Chapter 2

THEORETICAL BACKGROUND

2.1 Basic Principles and Scope

The semiconductor laser diode is a forward bias p-i-n junction. Free carriers
(electron and holes) are injected into an active region (i) by forward biasing the
laser diode. In the QW strained laser diode, the active region is the strained QW
layer. At low injection, these electrons and holes recombine radiatively through
spontaneous emission process to emit photons. However, the laser structure is so
designed that at higher injections the emission process occurs by stimulated
emission. The stimulated emission process provides spectral purity to the photon
output and provides coherent photons. Thus controllable change of optical
properties caused by free carriers is the basic operating principle of
semiconductor lasers. A typical laser structure is schematically shown in Figure
2.1

The diode consists of a number of layers. The active region is a strained

QW layer while the cladding are bulk layers. At a given ambient temperature,
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optical properties of the individual layer dep gical p

such as material composition, width, strain, doping concentration, etc. Free

carriers can be injected or doped into the layers. In active QW layer, carriers are
1

distributed over bound states in the wells and unbound states above or below the



wells. Carrier distributions in both momentum and real spaces depend on the

injection level.
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Figure 2.1 Schematic vertical structure of the injected semiconductor laser diode

In this report, the numerical methods are introduced in a natural way as needed
throughout the discussion of the physics. The calculations of the optical properties
are done on the basis of a semi-classical approach, which combines the
macroscopic scope of the optical field, and the microscopic calculations. The
optical behavior of a material is completely determined if its optical constants are

known. The complex permittivity, k, is defined by

K, =n’ (2.1.1)
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where the complex refractive index, n, consists of the real refraction index, »,,
'

and the extinction coefficient, 'k, is given by

n? =(n, +ik,) (2.12)
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The n, affects the wavelength and velocity while &, gives the rate at which the
wave decays with distance.

The general approach that addresses the problems of optical design and
characterization in semiconductor lasers needs to be developed. The approach
deals with the bulk energy structure in this chapter, then the discussion is
extended to the QW and furthermore strained QW structure in next chapter. At
the microscopic level, Kane model for band structure is applied, using dipole
approximation for the electron-photon interaction and considering the direct (first
order process) and indirect (second order process) radiative transitions. Many-
body effects, such as the Coulomb and exchange-correlation interactions, are
incorporated. Collective phenomena are taken into account through the effect of

dynamic free carrier plasma polarization. At the macroscopic level, complex

permittivity of the icond layers is computed as functions of the photon
energy, technological parameters, free carrier concentration and effective
temperature. Then the transfer matrix method (TMM) is adopted to give the
optical field distribution over the entire device. From the complex permittivity,
the optical gain in semiconductor lasers can be calculated and the graphical

outputs are presented.

2.2 Complex Permittivity

The complex permittivity proyides all the details of the light-matter interaction in
.
the multi-layer heterostructure device. Macroscopically, the imaginary part of the

permittivity can be expressed in terms of the rate of indirect s‘ximulatedlo



transitions, R, in the case of homogeneous medium, where photons are just

w.st >
plane waves.

4nhc® R,
Y = e x-Az’i (22.1)

Here c is the speed of light in vacuum and A4, is the real amplitude of the vector-
potential of a light wave at the circular frequency .

Since the imaginary part of the permittivity has strong frequency
dependence in the spectral range near the band gap, the radiative transitions also
affect the real part of the permittivity, x, in this spectral range. A modified

Sellmeier equation in the form of interpolation is performed by Marple used to

determine the real part of permittivity as function of the wavelength:

. 2
K, = Ag +B_{WJ (222)
s

where A is the wavelength measure in zm. The wavelength is related to the
photon energy, E (meV) as

3
1.2407x10 (223)

A=
E

Ag, B and Cj are Sellmeier coefficients defined in Appendix 1.

«,, is also related to «, through the Kramers-Kronig dispersion relationship.

K =2p J‘d"’“’ : (2.2.4)
a 0

For practical approach, the Kramers-Kronig dispersion relationship is useful to
1

calculate the change in «, due to modification of the band structure and/or

occupation numbers near the band gap. In this case, the relationship can be

expressed as n

>
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Ak, PV_[ dow ~Ax, (2.2.5)
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where Ax, is the change in the real part of the permittivity due to the change in
imaginary part, Ax, in the narrow spectral range around the band gap.

In addition to the complex permittivity, two other important real parameters, the
refraction index, #,, and the extinction coefficient, k, as related to complex
permittivity in equation (2.1.2) are used to characterize the optical properties of

the semiconductor layers. The expressions for these parameters are

no=te sl o) @26)

: Lf; +(e2 +K;’)»’/]% @27

k. is directly related to the absorption coefficient, @, given in cm”, which arises
in the Lambert-Bouguer law
a, =2o/ck, (228)
Instead of the absorption coefficient, the optical gain coefficient is commonly
used and is defined as 8, =-Q, (229
where in this case, the optical gain coefficient is the negative value of the
absorption coefficient.
In order to study laser characteristics around and above threshold,
the radiative current density provides an estimate of the injected current density
required achieving a gain carrier density. A simple relation for the radiative

. . . 1
current density is established as
.

Jog=— (2.2.10)
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where ¢ is electron charge, n is carrier density in the active region, d is the active

layer thickness and 7, is the total radiative lifetime.

2.3 Transfer Matrix Method (TMM)

After the optical properties expressed in terms of the complex permittivity of the
semiconductor layers are determined, the optical characteristics of the entire
multi-layer device structure can be found using transfer matrix method (TMM)
In classical electromagnetism, the response to an electric field is described by
both a current and a polarization, which is usually absorbed into the displacement.
This can be explicitly expressed in terms of the Maxwell equations. The four

Maxwell equations are

V(o £,)=0 @31
VxE, =ichm (232)

V.H, =0 233)
VxH, = —i-?l:,. E, 23.4)

where [, and H, are the Fourier components of the electric and magnetic fields

respectively, and I;,,, is the tensor of the complex permittivity, all at a frequency
. Due to electronic and optical properties of QW layers are different in the
directions parallel (xy-plane) and perpendicular (z-direction) to the direction of
the epitaxial growth, the semiconductor layers are considered to be optically

13



anisotropic. Considering all the layers are homogeneous in z-direction, the

complex permittivity will have the form

. K, 0 0
ko= 0 x, O (2.3.5)
0 0 K,

where x,, and K are the complex permittivities in the directions perpendicular
and parallel to the direction of growth, respectively.

The transverse electric (TE) polarization is the electric field in the plane
perpendicular to z while the transverse magnetic (TM) polarization is the
magnetic field in the plane perpendicular to z. Figure 2.2 illustrates these
polarization schematically.

The vectorical fields for these two modes can be expressed by a scalar function
¥, (r,2)= exp(iff,r, ){F,,,.J exp[iﬁq (z-2z,, )J+ B,, exp[— iﬁ_..l (z- z,,)]}
(2.3.6)
where f3, is the in-plane propagation constant, common to all the layers, £, ; is
the z-direction propagation constant in j-th layer, /-, and B, are the

amplitudes of forward and backward propagating waves, respectively.

14

Figure 2.2 TE and TM polarization of the semiconductor laser diode



Table 2.1 tabulates all the components of the electromagnetic field in equation
(2.3.6) for both the TE and TM polarization. Together with the complex
permittivity in equation (2.3.5) and the scalar function in equation (2.3.7), the
four Maxwell equations from (2.3.1) to (2.3.4) can be solved in every single layer

in the semiconductor laser diode.

Parameter TE pohrizatlon—l TM polarization
»? w? K,
ﬂ'z c—z’(.»l ‘ﬂf -CTK“_K": ﬁll
1
Y 1 -
Kul.‘
c 1 d¥,
E, L 4 —i— =
ot ¢ ok, d

E, 0

H,, ic 9t v,
o dz

H, <B.Y, 0
@

Table 2.1 Propagation constant in z-direction and electromagnetic field

At the interfaces, standard boundary conditions for electric and magnetic fields
yield the following transfer relationship for the scalar function (2.3.6) and its

derivative

@.j .j-1 (23.7)



N«z.; Nm.]!
[t 02 s (238)

where the factor y is defined in Table 2.1.
Combining equations (2.3.6), (2.3.7) and (2.3.8), the amplitudes of the forward
and backward propagating waves can be determined by
F, ~ | F,
oS = Tyl 3.
[B] [B @39

where T is a square 2 x 2 complex transfer matrix, defined by

1 1
" —(1+¢,)exp(id,) —(1-&,)exp(-iA;)
Tu=|2 RIS gl TR R (2.3.10)

20-¢)epl,) 3 (+E)exp(-id,)

where the complex parameters ¢, and A, are defined as follows:

Beji? 1

< Pesilin 23.11
<, b7, ( )
A =p.4, (23.12)

The amplitudes of the plane waves in cap layer and substrate can be obtained

through the multiplication of the matrixes in equation (2.3.10):

Famr | _ g [Foo 23.13

Buwn) | Buo @31

where To=[]Tu (23.14)
J=l

The TMM can solve the optical field distribution over the entire laser diode after
the boundary conditions in the substrate (z —> —0) and cap layer (z — ) are
specified. This completes thé macroscopic part of the calculations. The following

parts will deal with the microscopic level of the approach. 16



2.4 The Rate of Stimulated Transitions

The key understanding the semicond laser diode is the physics behind the
stimulated emission. This radiative process is related to the number of
participating quasi-particles other than electrons. In the first order process, the
electron transition results from an interaction with only one photon, which is also
termed direct one photon transition. In the second order process, impurity or
phonon scattering is involved, and it is termed indirect impurity or phonon-
assistant transition.

The rate of direct stimulated transitions at the photon energy hw is obtained by

using the Fermi's golden rule which governs the first order perturbation theory

RY, =

o,51

242 ,
2 e S Pl (s~ 18 (B ~ E, ~ h) @4.1)
(Lf)

hmlc?
Here, e and m, are the charge and mass of a free electron, respectively, Pj is the
matrix element for electron’s momentum in the direction of the vector potential,
E;, fi and Ey, f; are the energies and occupation numbers of the initial and final
states, respectively.

&, is the broadened energy delta function which is taken as

1 1

T oodl ( (242)

8.(E, ~E,~hw)=

—hw)/T
with T denotes as a parameter of broadening which is related to the coherence
time 7 involved in a transition by

r=— (2.43)
In this case, the delta function is approached as the coherence time 7 increases to

infinity, then ' — 0.



The rate of indirect stimulated transitions are obtained from the second order

perturbation theory as:

e’ Al ~2

R, = W;ﬁml—f,)pfﬁ i 8.(E;~E,-hoFhQ)  (2.4.4)
At 2

R, = m’c'w‘ Zf(l IV S| Hali) 6:(E, -E +hoFh0)  245)

Here, |i) and (f| denote the initial and final states of electrons, respectively. The
subscripts “a” and “e” indicates the photon absorption and emission processes
respectively, while the processes of absorption and emission of the phonon are
indicated by superscripts “+” and “-” respectively.

Vi=v,—v, (2.4.6)
where v and v, are the quantum-mechanical velocities of the electron in those

states, which are defined as

v E,_i_<,|p| B, it @47

~t

H q in equations (2.4.2) and (2.4.3) is the Hamiltonian of the electron interaction
with the phonon and/or ionized impurity, with the energy 7. And the rate of
indirect stimulated transitions at photon energy hw is the sum of equations
(2.4.2) and (2.4.3).

RY =R, +R, (2.4.8)
Thus, the resultant rate of stimulated transitions is the combined rate of the first
and second order processes:

Ry = R + R, (2.4.9)



Substitution of the rate of stimulated transitions obtained in equation (2.4.9) to

equation (2.2.1) yields the imaginary part of the permittivity as:

. 4 3.3 )
ko= ZEL Z[ [P i~ 1,08 (E, ~ E, ~hao) +
(i, /)

myo®

2 (2:4.10)
5.(E, - E, FhoFhQ,) ]

IVﬁl’f.a-f,>zy<fv9n4f>

Until now, the complex permittivity obtained are general without taking into
account the effects of many-body effect such as the excitonic absorption and band
gap shrinkage or the collective effects such as dynamic polarization of free carrier
plasma and the carrier-induced anomalous dispersion. All these effects will be

incorporated in the model phenomenologically in the following sections.

2.5 The Kane Model

This celebrated Kane model" is an extension of k. p method. In this method,
the perturbation Hamiltonian is proportional to the scalar product of the operator

of and the ctor of the Bloch electron, hence it is known as the

k. p method. This method aims to obtain a more accurate description of the bands
near the top of the valence band and the bottom of the conduction band rather
than the parabolic approximation for these bands.

Bloch’s theorem states that the wave function in a crystal can be written as

the product !

0= =50, ) @s1)



where r is the coordinate vector, V is the volume of the crystal, and u(r) is the
periodic function of r with the same period as that of the crystal lattice. This
function is never known exactly, thus approximate methods have to be applied.
The approach of Kane model will be adopted under this circumstance. This
model takes into account four double degenerated bands, i.e. conduction band (c-)
along with heavy (vh-), light (vl-) and split off (vs-) valence bands. All of them is

considered to be isotropic and follows the dispersion law as follows:

nk?
E—:r,(s):s(Ha,e) (25.2)

where m, and a, are the band-edge effective mass and parameter of
nonparabolicity in i-th band, respectively, and & is the energy relative to the
band edge. All the valance bands are considered to be parabolic, thus g, is set to
be zero for i = vh, vl and vs. For the conduction band, the parameter of

nonparabolicity is derived from the Kane model:

2
r=(]+,r/3)(l-¢-l)+,z /31 (253)
A+2x/3)1+x) E,
E
h =—2 2.5.4
where x L ( )

Here, £, denotes the energy gap between the conduction and valence bands and
E,, is the spin-splitting energy in the valence band. The subscript “I"” indicates
the central I -valley of the conduction band. Besides this, as illustrated in Figure
2.3, there are another two minimums in the conduction band of M-V
semiconductor, denoted the s)fde X- and L-valleys. The overall density of states
are much larger than that in the I -valley and follows the same dispersion law as

the I"-valley. They also play an important role in the position of the quasi-Fermi 20



level and intraband scattering in the conduction band. As a result, there are six
different sorts of charge carriers existing, i.e. I', X and L electrons along with
heavy (vh), light (vl) and split-off (vs) holes. Also, there are overall six different
types of charge carrier transitions among the bands. These are the direct interband
transitions as indicated by arrows in Figure 2.3. Three of these transitions occur
between the valence bands and the conduction band, while another three

transitions are the intervalence band transitions.

vs

Figure 2.3 Schematic band structure of direct gap III-V semiconductor
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2.5.1 Distribution Functions
The quasi-equilibrium Fermi-Dirac distribution function used to describe all the

electrons and holes over the Bloch states in the conduction and valence bands,

-£ H (2.5.5)

where j denotes the sort of carriers and i denotes the band involved. A, is the

respectively, is expressed as follows :

fy@©)= [l + exp[A

separation energy between the i-th band and the reference point. 7, is the
effective temperature of carriers in the i-th band. &, is the normalized chemical

potential of the conduction or valence band and is defined by

[ @.-E)IT,  i=c
5"{-(«%—@)/7; i=v 258

Here, ®_ and ®  are the Fermi levels of conduction and valance bands.

respectively, £, and E, denote the band-edge energies.

The normalized chemical potential can be resolved from the carrier concentration,

N, as follows:
'
2 F  duup,(u)
N, = ZNu-wav)TI‘——'A— 25.7)
9 Ty +exp[§, —-—f’—u]
T
where the density of states is defined as
8,(1)=2 2m,, @58)
V ..
(27h)?
u= (25.9)
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and the reduced density of states in the band is defined by

d
p,(€)= [, @ ,"(E) (2.5.10)

2.5.2 Direct Interband Transitions

As illustrated in Figure 2.3, there are six kinds of direct interband transitions.
Only the direct radiative transitions between the valence bands and the
conduction band are allowed to occur at kK = 0. However, the intervalence band

transitions occur at k 0.

The momentum matrix element for the direct transitions can be determined by the

cell periodic functions as follows:
Py (k) =, [e plu) (2.5.11)

The Kane parameter £, is introduced through the following expression

—jdasnnsjd¢|1 W = oot ’n , () (25.12)

where the square 4 x 4 matrix of dimensionless coefficients is expressed by

0 1 1 1
- 0 20 (+2)7Q°

L . it 25.13)

1 1+0)7°0" (+07Q° 0

in which the rows and columns correspond to c-, vh-, vl-, and vs-bands,

respectively.

1E, we
3L, 2m I',7

0? E‘ (2.5.14)




Now, replace the sum over the states with integral over ds, =d(h*k*/2,) in
the equation (2.4.8), with 4, is the band-edge reduced effective mass. Hence

from the contribution of interband transitions, the imaginary part of permittivity

yields
%2
K _32%;-2—” Mw) !ds,s,y'[l— JACHCAE
L e)Prle, () e.(e) + E, ~ho (25.15)
with
£,(6)=4, +he, £.(6,)= -l (2.5.16)
m 4al mya  2a;

v
On the other hand, the contribution of the intervalence band transitions to the

imaginary part of permittivity is expressed as follows

3y
. 27k,
Kone =;",,’l—ﬂ)(/ vhvlw)‘u/’ £d5a£ ,n"(gk)[f",(g‘)_j"(gl)kl [EW(E')_EW(L“)_,IW]
(2.5.17)
with
£,(6,)=A, +ﬂ£, £,(8,)=4, +Z_ME‘ (2.5.18)
Vl v

The energy gap A, is nonzero only for the transitions involving the split-off

valence band, in which A, = E,, .



2.5.3 Indirect Intraband Transitions

In the previous section (2.4), the indirect radiative transitions involving impurity
or phonon within the conduction or valence bands, the free carrier at the states in
which energy is higher than hw +hQ are neglected since their occupation
numbers are small. In this section, the contribution of these free carrier processes
with the absorption of photon to the imaginary part of permittivity is included. In
the high energy limit, the imaginary part of permittivity is independent on energy.
Thus the free carrier contribution to the imaginary part of permittivity can be

simplified to

K. 223N YE, (2.5.19)
cHm ®

where E, is the characteristic cross-section of absorption by the i-th sort carrier
accompanied with scattering by the s-th type phonon. In this case, the energy
h€Q, in equation (2.4.10) is set to zero since it has already been incorporated in

E,. Table 2.2 tabulates the characteristic cross-sections corresponding to

i -
different types of deformation phonons scattering . The related parameters

described in Table 2.2 are defined in Appendix 1 and 2.
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Mechanism

Charactenistic Cross-section E,

®arameter Description

Tonized impurities

16V27%e* N,

2,.343/2 7/2
3ex,m b’ 0

N, = concentration of ionized

impurities

Deformation

Acoustic Phonons

2D

D, = acoustic deformation
potential, p = crystal density,

s = velocity of sound

Polar Acoustic

Phonons

e‘KfL,T',

3V2mex,m! 0

K ,. = electromechanical

coupling constant

Deformation

Optical Phonons

2v2e*Dm"?
3cpQ 0’

h
oth[&}
27,

D, = optical deformation
potential, hQ,= optical

phonon energy

Polar Optical

Phonons

an2et (v - x;)Q, hQ,
1/243/2 3/2 00!h
3em; " 0™ 27,

0

K,, kK, = low- and high-
frequency limits of the

permittivity, respectively

Inter-valley Optical

Phonons

W2 Dm0 -4, h[m,,
2Ze Dym, (Ro=8y) " | B
27,

3eph'Q, 0’

o

1

D, = inter-valley optical
deformation potential,
hQ, = inter-valley optical

phonon energy

Table 2.2 Characteristic cross-sections of the phonon assistant indirect intraband transitions
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2.5.4 Many-Body and Collective Effects
Many-body and collective effects are not incorporated in the derivation of the
imaginary part of permittivity expressed previously. Two important kinds of the
many-body effects are the Coulomb interaction and exchange-correlation
interaction while the collective effects come from the dynamic plasma
polarization and anomalous dispersion.

The Coulomb interaction between the electron and hole modifies their
states thus excitonic transitions are possible below the band gap at low
concentrations of free carriers. The excitonic transitions are incorporated by the

term*11*]:

Koex = 2

21’k 1(ho-E, ho-E,
- 2 anhl:— TR el A S 6, + B, —ho)
v j(h1) (m)

m,w* ;

(2.5.20)
On the other hand, the exchange-correlation interaction is apparent at high carrier
concentrations. This results in the lowering the bottom of the conduction band
and raising the top of the valence band, which causes band gap shrinkage. The
shift of band edge can be described by
V.., (N,)=0.0582(1+0.7734m, (N, Yinft +7,(N,))n, (N )R, j=c,vh, vI
(2.5.21)

Here, the number of j-th band carriers in a spherical volume a radius equal to the

effective Bohr radius a, , is defined as

n, =21, N, )" (25.22)
! 2
i
a,, =S (2.5.23)
me

J

and R, is the effective Rydberg constant in that band, defined by 27



2
e (2.5.24)
2"a”n,,

7]
Then, the band gap shrinkage is the sum of the conduction and valence band
shifts,

AE, . =V (N)+V. (N,) (2.5.25)
In the electric field of optical radiation, the dynamic polarization of free carrier
plasma also contributes change in the real part of permittivity. This change can be

approximated as follows

. ot N
Ax, =3 S (2.5.26)
" @y m

Due to the strong spectral dependence of absorption near the band edge,
anomalous dispersion is another effect induced that changes the real part of
permittivity. By applying the integral Kramers-Kronig dispersion relationship, the
change forms

dow e (v, 1) -, (N, )] (2.5.27)
-0

A, (N, T) = Zpy =
n 7

where N, T are the carrier concentrations and temperatures, respectively while
N,,T, are related to equilibrium carriers due to residual doping.

After going through the derivation the complex permittivity using the approach of
Kane Model and incorporated with the many-body effects, the total imaginary
part of permittivity can be calculated with

Ko = Koyt Kot KLt K (2.5.28)

@ @ex
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2.6 Summary

In this chapter, basic concepts from physics and the theoretical backgrounds
linked directly to the simulation of the model are complied to provide
computations and derivations of the optical properties of the modeled structure. In
this part, the approach deals with the bulk energy structure. This theory will be
elaborated to the quantum well and furthermore strained quantum well structure
in next chapter. Microscopically, Kane model for band structure are applied,
using dipole approximation for the electron-photon interaction and considering
the direct (first order process) and indirect (second order process) radiative
transitions. Many-body effects, such as the Coulomb and exchange-correlation
interactions, are incorporated. Collective phenomena are taken into account
through the effect of dynamic free carrier plasma polarization. Macroscopically,
complex permittivity of the semiconductor layers is derived and the optical
properties such as optical gain and propagation constant can be calculated. Then
the transfer matrix method (TMM) is adopted to give the optical field distribution

over the entire device.
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