Chapter 3

QUANTUM WELL LASERS

3.1 Introduction

When light is confined into a cavity smaller than its wavelength, it behaves as a

particle rather than as a wave. Then an entirely new class of physical phenomena,

called quantum size effect appears. In the case of semicond lasers, q

behavior changes the operation of the laser in a dramatic and fundamental way.

Most semiconductor lasers are very thin (~20 microns) in the vertical
direction but this is not thin enough to cause quantum behavior. In QW lasers,
layer thickness (cavity height) is reduced to around 10 to 20 nm. The most
obvicus change in laser characteristic that this brings is that the amount of
material in the region is substantially reduced. This reduces the amount of energy
needed to achieve lasing and thus the lasing threshold, resulting a higher gain
characteristic but a lower maximum output power. In addition, quantum wells
have a much lower sensitivity to temperature change. In the very thin layer
available, there is much less space for energy and momentum effects to occur.
The quantum well structure prevents lateral modes forming and ensures that
lasing produces only one line. In addition the linewidth of single line produced is
narrower than for non-QW structures.

Lasers with a single’ active region are called “Single Quantum Well”

(SQW) lasers. Normally a number of quantum wells are used one ontop of



another. These are called “Multiple Quantum Well” (MQW) structures. MQW
structures retain many of the desirable characteristics of SQW but produce a
higher gain and greater total power. A disadvantage is that MQW lasers produce a
broader linewidth than SQW but still narrower than comparable non-QW

structures.

3.2 Quantum Well Layer

A heterostructure QW is a thin layer of narrower band gap semiconductor
sandwiched between two thicker layers of wider band gap semiconductor. Thin
layer means that the thickness of the layer is less than a few hundreds of
Angstroms. A double heterojunction structure with the band diagramme is

schematically shown in Figure 3.1.

Figure 3.1  Energy band diagramme
of a nominal quantum well
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The narrower band gap layér is seen as a potential well for both electrons and

holes. If it is thinner than the characteristic carrier free path, motion of those
31

ASI704905

TINTUWRDSITI AMAT ava

PEDDIIOTAVAAN



carries along the growth axis is quantized and hence is a quantum potential well
(QW). A QW layer can contain one or more QWs, and itself is a multi-layer
heteroepitaxial structure. The quantum wells always are considered to be square-
shape and isolated, with the barrier heights modified due to the exchange-

correlation interaction and strain effects as described in section 3.6.2.

3.3 Strained Layer Quantum Wells

Semiconductor lasers had been made from lattice matched heterostructures, such
as GaAs/AlGaAs and InGaAsP/InP. This situation changed rapidly when an
important new development in quantum well lasers occurred since early 1980’s
with the use of strained quantum wells. The driving force behind this
advancement has been the development of thin film epitaxy technique such as
Molecular Beam Fpitaxy (MBE) and Metal-organic Chemical Vapour Deposition
(MOCVD).

For lattice matched structure, the crystalline structure of the material must
be continuous across the junction. This means that the crystal lattices of the
different types of material on each side must join into a single crystal. If the
spacing of the atoms in the different materials is too different then interfacial
misfit dislocation oceurs in the crystal structure around the junction, destroying
the operation of the laser diode. The presence of the crystal defects can severely
degrade the optical and electronic properties of heterostructures. To avoid misfit
dislocation, only lattice malchq:i semiconductor or with lattice mismatch much

less than 1% were chosen in the fabrication of heterostructure devices .



Strained layer heterostructure can be formed by sandwiching an extremely

thin (~ 2 nm) semiconductor layer between much thicker layers of a material with

a significantly different lattice constant. A large strain is built into the epitaxial

layer while still maintaining good crystalline quality. The atoms in the thin layer

are pulled apart (tensile strain) or forced together (compressive strain) to conform

to the crystalline structure of the surrounding material. This means that the

chemical bonds holding the material together become longer or shorter than their

natural length. The atoms of the thin material layer conform to the lattice structure

of the thicker layers without misfit dislocation or cracking.

This results in two very beneficial effects

a)

b)

It allows the use of a much wider range of material in the heterojunction.
Strained layer epitaxy provides more material choices than lattice matched

layer epitaxy. This additional freedom makes strained layer heterostructure an

attractive didate for iconductor device applications. Strained layer
quantum wells can be used to generate laser emission at new wavelengths.

The strain in the lattice of the thinner layer changes its properties in a number
of highly desirable ways. Most obviously, it changes the band gap energy
levels. By engineering the amount of strain, the band gap (laser wavelength)
can be tuned without affecting too much the semiconductor properties of the

junction. In addition, the strain allows the device to operate at significantly

lower threshold currents than are possible in unstrained MQW lasers.
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3.4 Structural Aspects of Strained Layers

Consider a material InGaAs is grown on GaAs with a different lattice constant.
InGaAs has larger lattice constant than GaAs as shown in Figure 3.2(a) in
equilibrium-.

The GaAs substrate is so thick that it cannot be distorted significantly.
However, the thin layer of InGaAs can strain to conform to the GaAs in the plane
of the junction as in Figure 3.2(b). In this case, the lattice constant of InGaAs in
the plane is reduced to that of GaAs, while the usual elastic response causes
InGaAs to extend along the direction of growth. Thus InGaAs is distorted
severely and enormous elastic energy builds up. Only the thin film can tolerate
such stress. In a thick film, relaxation occurs and the InGaAs takes up its natural

lattice constant. Consequently, perfect hing of the atoms at the heterojunction

no longer exists. Instead the difference in lattice constants is taken up by misfit
dislocation and many bonds are broken, as shown in Figure 3.2(c).

The elastic energy of a strained layer is roughly proportional to its
thickness. There is therefore a critical thickness beyond which it costs too much
energy to strain additional layers into coherence with the substrate and dislocation
appears. Matthews-Blakeslee criterion calculated the critical thickness of a layer
by considering the strain and the lattice constant.

The defects associated with a relaxed layer are not localized only in the
plane of the interface. The dislocations may turn upwards and become threading
dislocations which terminate on the exposed surface of the sample. It will be
damaging when they pass th;ough the active region. Thus thick relaxed buffer
layers are grown so that cheap and readily available substrates (GaAs) can be

used under materials of different lattice constant. 34
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Figure 3.2 Growth of InGaAs on GaAs substrate.

(a) Separate layers at equilibrium.
(b) Thin layer of InGaAs on GaAs, the lattice constants are conforming.
(c) Thicker layer of InGaAs, where misfit dislocation occur.

3.5 Band Structure Under Strain

The most obvious effect of strain is to move the edges of the bands. This is
essential in the indirect stimulated transitions. Strain has more dramatic effects on
the degenerate valence band near T and opens another important route to band
engineering.

Figure 3.3 shows the effect of strain on the bands of a semiconductor
layer.  The valance band is split and the band gap is much reduced. In Figure
3.3(a), the active layer has a smaller lattice constant and tension is applied in the
plane. The effect of compression of the lattice in the plane of the junction is
illustrated in Figure 3.3(c) where the active layer has larger lattice constant. The
active layer is unstrained in l-'igure 3.3(b), showing the usual band structure. The

material composition and strain in a QW are not the independent parameters. In
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the case of the quaternary compounds Ga,In;.xAs,Py.y, the QW strain parameter is

interconnected with the mole fraction x and y by"'

 0.0125xy—0.4176x +0.1896y

5.8688x107* &) G310

s

where & is the QW strain expressed in %. Tensile strain is valued positively
while compressive strain is negative.

The bands in a strained quantum well are affected both by the strain and
by the confinement. They reduce the symmetry in the same way and pull the top
valence bands further apart. Thus a larger density of holes can be accommodated
in the top valence band alone before the next band is also populated. As a result,
by using strained quantum wells, the performance of semiconductor lasers has

been improved substantially.
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Figure 3.3 Effect of strain on the bands of a semicond , showing the splitting of
valence band.

(a) The effect of tension of the lattice in the plane of the junction.

(b) The layer is unstrained. !

(c) The effect of compression of'the lattice in the plane of the junction.

vh: heavy hole valance band
vi; light hole valance band 36
vs: split-off valence band



3.6 Theory of Quantum Well Layer

The general approaches applied in the modeling of optical design and

characterization in bulk layer of icond lasers ded to the QW and

furthermore strained QW structure. In QW layer, the potential well is thinner than
the characteristic carrier mean free path. The carrier energy in such a well is
quantized, acquiring only a finite number of discrete values of energy level,
termed quantum subbands. All electrons and holes may be trapped in the lowest
level. Motion parallel to the layers is not affected. This result is a two-
dimensional (2D) carrier state. In the barrier, the motion of the carriers behave as
those in the real three-dimension (3D). The former is known the bound state and
the latter is the unbound state. This is an additional feature of QW incorporated in
the barrier bulk layer. The optical properties obtained in the bulk layer are
applicable in QW layer with certain modifications added on the model due to the
size quantization. The similar procedures will be adopted in analyzing the optical

properties of QW layer.

3.6.1 Carrier Distribution

In the QW layers, carriers are injected into unbound states in the barriers while
the carriers are trapped into bound states in the potential wells. The wells are
considered to be square-shaped and the electrons (holes) with energy above
(below) the barriers are treated as bulk-like 3D carriers while those below (above)
the barriers are localized 2D garriers. Both the electron and hole Fermi levels are

constant across the QW layér, thus the layer is electrically neutral. The Fermi-
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Dirac functions give the quasi-equilibrium occupation probabilities for 3D and 2D

subbands in conduction or valence band,

f.(f.)=<l+exp[%—§.(2)}> i=c,v @3.6.1)

Here, &,(z) is the normalized chemical potential, ¢, is the energy relative to the
band edges which is defined as follows:

&, (k)=E, +¢, (3.62)
where E, is the quantum subband edge, while ¢, is the kinetic energy associated
with the motion in the plane of QW, related to the in-plane effective mass in the

well, m,

22
£, =K (3.63)
2’":!\1

As in the bulk layer, the Fermi levels in conduction and valence bands, @, and
@, are resolved from the total sheet concentrations of electrons and holes in QW

layer, N, and N,,. These involve the integral over the 3D and 2D subbands,

ZN,,D + [deN,5p(2) i=c v (3.6.4)

(barriers)

The N,,, is determined as the bulk concentration in equation (3.5.7). The sheet

concentration of 2D carriers is given by

Nop= ZN".,D(T;)In[I + exp{t,‘m - ﬂﬂ (3.6.5)
o TI

Here, the 2D density of states gt the subband edge,

Lwl i .,L»T
N, ()= 2{ (2”",,)1 ]— e (3.6.6)
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The above result is obtained assuming that the wells are square-shaped.
When the band bending is taken into account, the effective concentration is
calculated as

“" dup, ()T, ()

Ny = thm j

I Trep—&.) Ca%

with &, denotes the normalized chemical potential in the well and the reduced

density of states in 2D subband is given by

o)
0= e 1_(1-4,”[ e ’(k)”"’(k{ s Zﬂik;ﬂ

(3.6.8)

T, is the quantum confinement factor given by

o ww]  ae] | aw]  Laml'\
= <l+§ ’(/r)[ +g"q.j,m} ><”q,,,<k){”4" PAC] RPT)

(3.6.9)

where ¢,, and g,, are the parameters defined as

o = oG, ) 3610
d,
4o =2 o (8,5, 480) Ge1n

and the well-to-barrier in-plane effective mass ratios are expressed by

G =—H1= (3.6.12)
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3.6.2 Strain and Band Gap Shrinkage Effects

As mentioned in section 3.5, the lattice mismatch between the epitaxial layers and
substrate induces strain in QW layer. This induced strain changes the band gap
energy levels and causes band edge shift. The shift of the band edge 4, is
proportional to the relative change in the lattice constantd . From the Pikus-Bir
Hamiltonian, the shift of the band edge for the conduction, heavy hole and light

hole bands can be expressed as

A, =240 -C,/Cy)8 (3.6.13)
A =24, +B-24, -B)C,, I1C, B (3.6.14)
A =—[2‘4v ~B-2(4,+B)C,, /Cu}s (3.6.15)

where A, A, and B are the deformation potentials for the conduction and valence
bands, C,, and C,, are the elastic constants. All these parameters are defined in
Appendix 1.

As in the bulk layer, the band gap shrinkage in QW is caused by the
exchange-correlation interaction of free carriers. The conduction band edge is
shifted up while the valence band edges are shifted down, causing an increase in
the barrier height. This shift is calculated as
A, (N, )= 0058201+ 0.7734n, (N, , n[1 4, (N, )1 (N, )R, (3.6.16)
Thus, with the contribution of strain and band gap shrinkage, the barrier height
becomes

A =AE, +A,, +A,, (3.6.17)

1

where AZ, is the band offset at heterojuction in a nominal QW.

40



3.6.3 Complex Permittivity from 2D Subbands
Both the imaginary and real parts of the effective permittivity are calculated
similar to those in the bulk layer with an additional contribution from 2D
subbands.

The imaginary part of permittivity in QW layer combines those from all
the QWs which are considered to be isolated and identical. It is expressed as

follows :

Kun = "‘;3", i Do Ide.M‘"(s.)ﬁ Ilemten)-Lleatelx

S, [5,,,,(5, )+ea(E)+E,, - h(u]

(3.6.18)

Here, £, is the band gap in the well, v, is the number of QW, d is the total
width of the layer, ¢,,,¢,and f.(¢,,), f.(¢,,)are the energies and occupation
probabilities of the participating states, the reduced effective mass of electron-

hole pair is defined as

Hom = Mo My (M 1) (3.6.19)
22

& = "k (3.6.20)
2hdeym

And within a framework of the parabolic subband approximation to the Kane

model, the reduced matrix element for TE and TM polarization are

vim T3 vam (3.621)

Mo =
31 ™

vm

{1‘" +ire TE

1
where /] and /], are the squared overlap integrals ofthe m-th quantum
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subband in the valence band related to the states |1) and |2), respectively. They

are expressed in the forms:

15, (k)=d, A, (k)A,, (k)x

{ 550 () Gy )] 00 )+ e )] €Ol ()05 ()
O G® GO+ 0 ® GO 0B

- even states - (3.6.22)

1on (k) = d A, (K)A,, (k)

{ 51 ) = e )] 500 )+ e O] €05 )} 051 6]
I B) = Qyme 6) G (k) + Gy (K) Do (k) + 4,3 (K)

- odd states - (3.6.23)

I ACINE
A, (k) =——=— ———r 1 3.6.24
W=7 { ,,,(k)[ +éh q,;u:)][ +g”q,;,ar)} } S

For the real part of permittivity, the contribution of the induced anomalous

dispersion is determined as'*!

AK s = —PV | d'm—";"’ (3.6.25)

The free carriers in 2D subbands also contribute to the real part of permittivity

through dynamic plasma polarization as follows :

E,
AKop _—h,w:dZTZIn[Hexp( 1_, —?]J (3.6.26)

(O]
Subsequently, the overall contribution of 2D subbands to the real part of
permittivity in QW layer is '

AKyp = AK;!D,ad + Ax;:lb.pl (3.6.27)
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