Chapter 11 Theory of Crystalline and Amorphous Semiconductors

Chapter 11

Theory of Crystalline and Amorphous Semiconductors

2.1. Introduction:-

A crystalline solid is distinguished by the fact that the atoms making up the crystal
are arranged in a periodic fashion i..e there is some basic arrangement of atoms that is
repeated throughout the entire solid. Thus the crystal appears exactly the same at one
point as it does at a series of other equivalent points, once the basic periodicity is
discovered. However not all solids are crystalline; some have no periodic structure at
all (amorphous solids) and others are composed of many small regions of single

crystal material (polycrystalline solids). The three types of solids have been

illustrated in figure 2.1

=

(a) Crystalline (b) Amorphous (c) polycrystalline

Figure. 2.1 The three types of solids classified according to atomic
arrangement: a) Crystalline b) Amorphous are illustrated by
microscopic views of the atom whereas c) Polycrystalline structure is
illustrated by a more macroscopic view of adjacent single crystalline

regions. [19]
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In this chapter we are going to discuss the relevant theories of crystalline and

amorphous materials which we shall be using in analyzing our experimental results.

2.2 Crystalline Semiconductors:-

The basic lattice structure of many important semiconductors is the diamond lattice
which is characteristic of Si and Ge, and is shown in fig 2.2. The basic difference
between the case of an electron in a solid and that of an electron in an isolated atom
is that in a solid, the eleclron. has a range or a band of available energies. The
discrete energy levels of the isolated atoms spread into bands of energies in the solid
because in the solids the wave functions of electrons in neighboring atoms overlap,
and an electron is not necessarily localized to a particular atom. In a solid many
atoms are brought together so that the split energy levels form essentially continuous
bands of energies. Every solid has its own characteristic energy band structure. This
variation in the band structure is responsible for the wide range of electrical

characteristics observed in various materials.

Figure 2.2 The Basic Diamond Lattice Structure [20]
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2.3 Band Structure of Crystalline Semiconductors:-

Semiconductor materials at 0°K, have a filled valence band separated from an empty

conduction band by a band gap containing no allowed energy states (Figure. 2.3).

!% Conduction Band

—————> Valence Band

Figure 2.3 Typical band structure in semiconductor at 0 k. [21]

The difference in various material properties is determined by the size of the band
gap E,. This is much smaller in semiconductors than in insulators. For example
Silicon has a band gap of about 1.12eV [22] compared to SeV for diamond. The
relatively small band gap of semiconductors allows excitation of electrons from the
lower valence band to the upper conduction band by a reasonable amount of thermal
or optical energy. Because of reasonably smaller energy gaps, the number of
electrons available for conduction in semiconductors can be increased greatly by
thermal or optical excitations.

An ideal semiconductor will have an energy gap without any state existing within it.
But in practical semiconductors, the situation is much different from this. There are

several reasons to explain the departure:-
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1. A semiconductor crystal obtained from industry is never perfectly crystalline in
the sense that it may have a number of point defects, different impurities and
crystal defects.

2. A semiconductor surface represents the termination of an infinite semiconductor
crystal and as such the semiconductor crystal will contain surface states due to
incomplete covalent bonds and other effects.

The presence of these defects is taken care of by placing appropriate energy states

within the energy gap of an otherwise perfect crystal. But in crystalline

semiconductors, their densities are usually smaller relative to the free carrier

densities.

2.4 Electrical Properties:-

4

It is the temperature dependence of semiconductor ivity that disti

semiconductors from metals and insulators. To analyze the variation of
semiconductor conductivity, it may be expressed as:

0,(T) = qu, (T)n(T) @n
Presuming the mobility p, (T) to be determined by lattice scattering it may be
written as [23]

n(1)= 21 22

3
2

=

But the carrier density in ‘n’ type semiconductor may be expressed as [24]

3
- 2 . Ec"Er) )
n(T)=A,T exp[ ( T (2.3)

On combining above equations, we finally get,
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ofT) = Aexp[—(E‘ “E, )] @4)

T

if we ignore the variation of Ef with *T”,

o according to equation (2.4) should exhibit an exponential variation up to about
60°K. With further rise in temperature, the supply of electrons from the donor states
decreases around room temperature. ‘¢’ deviates from its exponential dependence
when n=Nj. In that case the semiconductor conductivity according to equation

(2.1) is given by,
A
o(T)=q =+ N, 3)

Thus, when the carrier density has stopped increasing, o(T) according to equation
(2.5) must drop off with increasing ‘T°. However, if the temperature of the
semiconductor is increased sufficiently so that the direct excitation of carriers from

the valence band to conduction band takes place, the specimen tends to become

i-region

n-region

Fig. 2.4 The variation of In ¢ as a function of temperature 'T' [25 |
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intrinsic. It then starts displaying a characteristic exponential dependence once again

as expressed by,

2kT

B -E,
o, =qlu, + u, b, = ql,u,(T)w,,(T)[(N,N,): ew{ S J] (2:6)
The variation of In o as a function of (1/T) is shown in Fig: (2.4)
2.5 Optical Properties:-

Optical measurements constitute one of the most important means of determining

the band structure of semiconductors. Photon induced electronic transitions can

occur between different bands which lead to the determination of the energy band
gap or within a single band such as the free carrier absorption. Optical measurements
can also be used to study lattice vibrations. The transmission coefficient “T” and the
reflection coefficient ‘R’ are the two important quantities generally measured. For

normal incidence they are given by [26]

_! R?)exp(- 4nx /1) @

" 1-RZexp(-8mx/1)
and

_(1=nf +K’

= 2.8
(1+ny +K? i

Where A is the wavelength, n is the refractive index of air with respect to the
semiconductor, k is the extinction coefficient and x is the thickness of the sample.

The absorption coefficient per unit length o is given by,
a=— (2.9)

So, by analyzing T Vs A and R Vs A at normal incidence, both ‘n’ and ‘k’ can be

estimated. Near the absorption edge, the absorption coefficient can be expressed as
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(26]

a=(v-E) (2.10)
Where hv is the photon energy, E, is the band gap and v is a constant.
In the one electron approximation v = 1 / 2 and 3/2 for allowed direct transitions and

forbidden direct transitions respectively.

2.6 Amorphous Semiconductors:-

Amorphous semiconductors are non-crystalline in the sense that they lack long-range
periodic ordering of their constituent atoms. They contain covalently bonded atoms
arranged in an open network with correlations in ordering up to third or fourth
nearest neighbors. This short-range order is directly responsible for the observable
semiconductor properties such as optical absorption edges and activated electrical
conductivities.

A distinction has to be made between amorphous and polycrystalline materials.

3

Polycrystalline semi are composed of grains with each grain containing a

periadic array of atoms surrounded by a layer of interconnective boundary of atoms
(Figure.2.1c). For smaller and smaller grains that i.e microcrystallites the surface
layer of each grain contains a larger and larger number of atoms relative to the
periodically arranged interior atoms. Eventually for smaller grains the distinction
between the interior and the surface is lost and the concept of microcrystallites with
a definable periodic region looses its meaning. The material is then said to make a
transition to the amorphous state. '

Amorphous semiconductors are prepared by atomic deposition procedures such as:
Evaporation, ~ Sputtering, Chemical Vapour Deposition (CVD), Plasma

Decomposition of gases and Electroplating. [27-30]
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2.7. Band Structure of Amorphous Semiconductors:

In recent times, exciting advances have been made in understanding the problem of
how the disorder in a semiconductor influences the band structure and hence the
electrical properties. Observed experimental data of electrical transport properties
can only be properly interpreted if a model for the electronic structure is available.

For crystalline semiconductors as already discussed, the main features of the energy

N(E) N(E)

Ev T Ec E Ey E T En Ec

donors

acceptors N(E)
N(E)

Figure 2.5. Schematic density of states diagrams for amorphous semiconductors.
(a) The Cohen-Fritzche-Ovshinsky model, (b) the Davis-Mott model showing a
band of compensated levels near the middle of the gap, (¢c) modified Davis-Mott
model, (d) a "real" glass with defect states [31]

12
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distribution of the density of electronic states N(E) are the sharp structure in the
conduction and valence bands and the abrupt terminations at the valence band
maximum and the conduction band minimum. The sharp edges in the density of
states produce a well-defined forbidden energy gap. Within the band, the states are
extended which means the wave functions occupy the entire volume. This specific
feature of the band structure is a consequence of the perfect short range and long
range order of the crystal. In an amorphous solid, the long-range order is destroyed
where as the short range order ;omewhat exists. The inter atomic distance and the
valence angle are only slightly changed. The concept of density of states is also
applicable to the non-crystalline solids. Based on Anderson’s [32] theory, Mott [33]
argued that the special fluctuations in the potential energy caused by the
configurational disorder in an amorphous material may lead to the formation of
localized states which do not occupy all the different energies in the band but form a
tail above and below the normal band. Mott postulated further that there should be a
sharp boundary between the energy ranges of extended and localized states. The
states are called localized in the sense that electrons placed in that region have their
wave functions extending over only a short distance and not the entire region.
Several models have been proposed for the band structure of amorphous
semiconductors. Figure 2.5 illustrates schematically the main features of various

band models.

2.7.1 The Cohen-Fritzsche-Ovshinsky (CFO) Model:-
The CFO model [34] shown in Figure 2.5a assumes that the tail states extend across
the gap in a structureless distribution. This gradual decrease of the localized state

destroys the sharpness of the conduction and valence band edges. One of the major
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objections against the CFO model was the high transparency of the amorphous

chalcogenides below a well-defined absorption edge.

2.7.2 Davis-Mott Model:

According to the Davis-Mott model [35] the tails of the localized states should be
rather narrow and should extend only to a few-tenths of an electron volt into the
forbidden gap. They also proposed the existence of a band of compensated levels
near the middle of the gap, or;ginating from the defects in the random network
namely dangling bonds, vacancies etc. Figure 2.5b sketches the Davis-Mott model.
Here Ec and Ey represent the energies, which separate the ranges where the states
are localized and extended. The central band may be split into a donor and an
acceptor band, which will also pin the Fermi level (Figure i.Sc)4 Mott suggested that
at the transition from extended to localized states the mobility drops by several
orders of magnitude producing a mobility edge. The interval between the energies Ec
and Ev acts as a pseudogap and is defined as the mobility gap.

Experimental evidences coming from luminescence, photoconductivity and drift
mobility studies suggest the existence of various localized gap states, which are split
off from the tail states and are located at well defined energies in the gap (2.5d).
These states are associated with defect centers, whose nature is not always known.
The interpretation of electrical transport properties is dependent on the energy
distribution of the density of states. On the basis of the Davis-Mott model, there can
be three processes leading to conduction in amorphous semiconductors. Their
relative contributions to the total conductivity will predominate in different
temperature ranges. At very low temperatures, conduction can occur by thermally

assisted tunneling between states at the Fermi level. At higher temperatures, charge
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carriers are excited into the localized states of the band tails. Carriers in these
localized states can take part in the electrical charge transport only by hopping. At
still higher temperatures, carriers are excited across the mobility edges into the
extended states. The mobility in the extended states is much higher than in the
localized states. It, therefore, follows that the electrical conductivity measurements
over a wide temperature range are needed to study the electronic structure of

amorphous semiconductors.

2.8. Electrical Transport Properties:

To describe the transport properties of amorphous semiconductors, one may start
from the Davis-Mott model. As already explained, the essential features of Davis-
Mott model or the band structure of amorphous semiconductors are the existence of
narrow tails of localized states at the extremities of the valence and conduction bands
and a band of localized levels near the middle of the gap to account for the presence
of dangling bonds and vacancies. This leads to three basically different conduction

mechanisms.

2.8.1 Extended State Conduction:

Conductivity for any semiconductor can be written in the following form:-
o= eIN(E)p.(E)f(E)[l - f(E)JdE (2.11)

where f(E) is the Fermi-Dirac distribution function given by:

1
f(E) = TropE (2.12)
Using the relationship,
%:—f(E)[l—f(E)/kT] (2.13)
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o can be written as,

c:ejN(E)p(E)kT%(EE—)dE (2.14)
In the Davis-Mott model, the Fermi level Ef is situated near the middle of the gap
and thus sufficiently far from Ec, the energy which separates the extended state from
the localized state, so that the Boltzmann statistics can be used to describe the
occupancy of states,

f(E) = exp[-(E-Er)/KT] (2.15)
According to Mott [36], the mobility drops sharply at the mobility edge Ec [or Ev]
but it is not exactly known how the mobility depends on energy in both conduction
regimes. In the non-degenerate case under the assumption of constant density of
states and constant mobility the conductivity due to electrons excited beyond the
mobility edge into the extended states is given by:-

o =e N(Ec) kTpc exp[-(Ec-Er)/KT] (2.16)

where pc is the average mobility. The number of electrons is given by;
n= J.N(E(.)exp[—(E - E,)/ kT)dE
3

= N(Ec)kT exp[-(Ec-Ef)/KT] (2.17)
In order to get an idea of the order of magnitude of pic, we define

o(Ec) = e N(Ec) pckT (2.18)
If N(Ec) = (N(E))/3, where <N(E)> is the average density of states over the bands,
then

0(E.)=e(N(E)) pcKT/3 (2.19)
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Mott calculated the lowest value of the electrical conductivity before the start of the
activated process i.e just at Ec. This quantity is called the minimum conductivity. He

derived the expression,

2
e
O(miny = Constant. ™ (2.20)

where the constant lies in the range between 0.026 and 0.1; G(min) is usually of the
order of 200 to 300 Q 'em™, ‘a’ in the above expression represents the lattice
spacing. Taking the constant to be 0.026 one finds for the mobility,

0.078e
He =

—_— (2:21)
ha((N(E)))kT

The density of states function for a crystalline semiconductor may be expressed as:
e 222
On the other hand the maximum energy Enay of the band which also yields the width

‘B’ of the band is expressed by:

_ n'h?
2

Emax

= =B’ and knax = ~ (223)
2ma a

ComBining (2.22) and (2.23) one may obtain,

T 1
NE) = —5-=—— 224
(E) 4a’ a’B @29
Introducing the above result in the expression for pc one gets:
2
. 0.078exBxa 2.25)

hKT

o
Taking A= 2A; B works out to be 9.4ev. One then finds that at room temperature
pe = 0.17cm?/V.Sec. This value corresponds to a mean free path comparable to or
less than the interatomic distance. In this regime the mobility can be obtained with

the help of Einstein’s relation,
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eD

n=ir (2.26)
and the diffusion constant ‘D’ may be written as:
D= lua® (227
6
where vis the jump frequency.
Combining (2.26) and (2.27) we get
S u = ‘;(_; (2.28)

This equation gives the same temperature dependence as equation (2.25) derived by
Mott. The expression for extended state conductivity may now be written from

equation (2.16) in the following form.

c=0, exp{—(Eck}EF ]:| (2.29)

0.078N(E, )ea’B
)

where o, =eN(E.) pckT=

2.8.2- Conduction in Band Tails:
Hopping Conduction:
If the wave functions are localized, conduction can only occur by thermally activated
hopping. Every time an electron moves from one localized state to another, it will
exchange energy with a phonon. It may then be expected that the mobility will have
a thermally activated nature,

Hhop = Ho exp[-W(E)/KT] (2.31)
The pre exponential factor p1y has the form: (see 2.28)

=eR2(9ph)

T
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where 8, is the phonon frequency and "R’ is the distance covered in one hop. For a

typical phonon frequency 8, , which is 10"sec™ and W of the order of KT, equation
(2.31) yields mobility of the order of 10" %cm?V 'sec" at room temperature.

The conductivity being an integral over all available energy states, will depend upon
the energy distribution of the density of localized states. If one assumes the density
of state function of localized states to be,

N(E)E-E,)

“N(E)=
(E) (AE)

(2.33)

With AE=E. -E,, then the conductivity o, due to electrons can be easily

calculated from equation (2.11) as,

~ KTC, exp[(E, —E; + W)/KT]
Chop = To(hop) AE

(2.34)

Where Gy, = (%](s,,eIR’N(EC)) (2.35)

2.8.3 Conduction in Localized States at the Fermi Energy:-

If the Fermi Energy lies in a band of localized states, as predicted by the Davis and
Mott model, the carriers can move between these states via the phonon assisted
tunneling processes. An estimate for the temperature dependence of the hopping
conductivity at Er has been given by Mott [37]. Consider an electron that is scattered
by phonons from one localized state to another. The energy difference between the
states is denoted by ‘W’. The probability ‘p’ that an electron jumps per unit time
should be given by,

p=39,, exp(-20R - W/KT) (2.36)



Chapter 11 Theory of Crystalline and Amorphous Semiconductors

Since, the probability function at Ef is 1. it follows from equation (2.16) that the
conductivity in localized states at the Fermi energy is,

o =epkTN(E;) (2.37)
By making use of Einstein’s relation

_
e

. | . .
since, D = ng‘ , the conductivity can be written

2 2
c=2 "6R N(E;) (238)

Here N(Ey) is the density of states function at the Fermi Energy. And N(Ep)KT is the
density of electrons that contribute to conductivity. Using equation (2.36) in equation
(2.38) we get,

o= %eZRISwN(EF)exp(— 2aR - W/KT) (2.39)

As the temperature is lowered, the number and energy of phonons decrease and the
more energetic phonon-assisted hops will progressively become less favourable.
Carriers will then tend to hop to larger distances in order to find sites, which lie
energetically closer than the nearest neighbours. This mechanism is the so-called
“Variable Range Hopping’. In order to find the most probable hopping distance,
Mott used an optimizing procedure, which is as follows:

Since, N(Eg) is the density of states per unit volume and per unit energy, then the
number of states with energy difference ‘W’ within a distance ‘R’ from a particular
atom is given by,

4—;R’N(EF)W (2.40)

20
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The electron can leave its site only if the number of accessible sites is at least one.
Taking this into account one gets for the average energy spacing between states near
the Fermi energy level to be,

3

SO - 2.41
4nR’N(E;) @241

and for the jump probability;

- - [ R 242
p Swexp|: 2aR [4nR]N(E;)kT]:I (242)

The most probable jump distance is found by minimizing the exponent of the above

expression as a function of ‘R’. One then finds,

R= [—9——}' .43)
SraN(E KT

On combining equation (2.42) and equation (2.43), we get the jump frequency of the

form,
p= 9, ex ¢ (2.44)
T+
where
1
A=2.1[c’ /KN(E)]* (2.45)

Mott’s treatment of variable range hopping leads to a temperature dependence for

the conductivity of the form:-

o=0,(T)ex _—]A~ (2.46)

T+

where

21
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1

*9,,N 2 H

o,(T) = M _9__, =" gw[m] (2.47)
6 8naN(E, kT 7(81); kT

In principle, the two parameters "o’ and N(Eg) can be evaluated from the slope of a
plotofin (cﬁ) vs T and from the intercept at T"*=0, if one makes a reasonable
assumption for 9, . Also one can get an idea of most probable hopping distance "R’

at a given temperature from equation (2.43).
A diagrammatic representation of the three states of conduction in an amorphous

semiconductor is shown in figure. 2.6.

(i) Ec-E¢

Ino

(i) Ex-Ef + &

? (i) &
S
\@

vy T

Figure 2.6 A schematic illustration of the temperature
dependence of conductivity expected for amorphous
semiconductor. The activation energies found in various
regimes are indicated [after Mott and Davis [38]]

22
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2.9. Optical Properties:-

The most direct and perhaps the simplest method of proving the band structure of a
semiconductor is to measure the optical absorption spectrum. In the absorption
process, a photon of known energy excites an electron from a lower to a higher
energy state within the semiconductor. By studying the changes in the transmitted
optical density as a function of the wavelength, one can investigate some of the
possible quantum mechanical transitions that the semiconductor electrons can make
and learn much about the distrib;nion of allowed electronic energy levels.

From the optical transmission data one can obtain considerable information on the
electronic structure of the material. Among the optical constants that can be
determined are refractive index, absorption coefficient, extinction coefficient as well
as the thickness of a film. By using these parameters many other useful informations
such as energy gap, various characteristic energies, dielectric constant, effective
number of valence electrons per anion etc could be obtained. Knowledge of these
informations is vital when the suitability of a material as an optical element is
considered.

The éractical situation for a thin film on a transparent substrate is shown in Fig 2.7,
where the film has a complex refractive index and a thickness ‘d’ bounded by two
transparent media with refractive indices Ny and N,. The transmittance ‘T’ and

reflectance ‘R’ of the system is given by [39]

1= ToTe 2.48)
1- RzoRn
and - TRy g, (2.49)
l= Rzosz
where,

23



Chapter 11 Theory of Crystalline and Amorphous Semiconductors

R
Incident light
Matrix 0 (air)
No
Matrix 1 (thin-film)
Ny
Matrix 2 (Substrate)
~ ~
. N
Ny
Matrix 3 (air)
Figure 2.7 Typical Tr ission ‘T’ and Refl ‘R’ of light in a
thin film, on a transparent substrate.
toty | 2t ||
N [ Gtlate = € it
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2
Run ' ef‘mtwru T, = n, 2
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A
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N, +N, N, +N,
Ni = ng + iky.

The exact expression of ‘T” in air-thin film-substrate-air interfaces where refractive
indices Ng=N3 =1, N, =n +ik and N; = n;

is given as [40]

24
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Ax
T=— 2.50
B-Cx +Dx’ @30
where,

A=16n,(n® +k*)

B=|n+1) +k] [(n+1)n+n%)+ k2

C=lr -1t -t 1) 200 + I)]ZCo{“%i]—k{z(n’ - +K)+ [ 1 —I+k3)]25ir{i’:'—d)
D= l(n -1) +k’[(n—an—n’,)+ k’]

— 4nkd

and X= exp( ) = exp(—ad)

« is the absorption coefficient of thin film at wavelength A.
A typical transmittance spectrum is shown in figure 2.8. The interference fringes

observed are due to interference of the multiply reflected beams in the film.

120

100 -

80 |-

60 |-

40 -

% Transmission

0 s s L
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Figure 2.8 A typical transmission spectrum of thin film

Experimentally the number of interference peaks increase with the film thickness.
The basic equations for their fringes at maxima and minima are given by,

2nd =mi (2.51)

25
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and 2nd = (m + —‘l;)k (2.52)

respectively, where the integer ‘m’ is the order of the interference fringes. The
transmission maxima Tpa and minima T, may be obtained by incorporating

equation (2.51) and equation (2.52) in equation (2.50) and are given by,

2
T = L — @.53)
C,+Cyx" =2(n" = 1)(n” —n’)x
and .
2
Toin = 16n,n°x .54)

C,+C,x* +2(n* = 1)(n* —n%)x
where C; = (n+1)’(n+ng’) and C; = (n-1)*(n-n;*) and k*=0 for weak absorption in the
medium. An expression that is independent of x’ could be derived by subtracting
the reciprocal of equation (2.54) from the reciprocal of equation (2.53). Then we
obtain,

L 1 V-l (2.55)
T Tw  4nif :

min  {max

Solving equation (2.55) for ‘n’ yields,

1
n=[N+(NZ—n’,)J] (2.56)
Equation (2.56) can be used to calculate n(A) from Tpax and Tpin
Once n(}) is known a can be determined from both equations (2.53) and (2.54) by
solving the quadratic equation for ‘x’. Similar results can be obtained by adding the

reciprocals of equation (2.53) and equation (2.54). ‘x” is then given by,

2
=exp(-ad) 2.57)

where ,

26
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_ 4’0, (T + To)
T T,

max ! min

F

The thickness of the film can be calculated from two maxima or minima using
equation (2.51) and equation (2.52) such that,

- MAL,
d= ——2172
2[a,n(h) =20 (2y)]

(2.58)
where, M = (m;-m;) = number of oscillations between two extrema. Knowing d and
o the extinction coefficient ‘k? can be calculated. Besides the transmitted and
reflected energies, part of the impinging photon energy will be absorbed by the
electrons in the film leading to different inter and intra band band transitions. The
photon energy, which corresponds to the transition of the electrons from the valence
to conduction band in a crystal, is often described by:

aE = A(E-Ep)" (2.59)
where A is a constant and o, E and Ej represent absorption coefficient, photon
energy and energy gap respectively. For amorphous semiconductors the value of ‘m’
is generally found to be, 2. As a result equation (2.59) may be written as:

JoE =VA(E-E,) (2.60)

Therefore, on plotting JoE as a function of the photon energy E, one should expect
to get a straight line, the intercept of the line with E= 0 axis gives a measure of the
energy gap of the amorphous material.

The refractive index of an amorphous material can be expressed as

[41],

(2.61)

27
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where n = refractive index, Ey is the energy of the effective dispersion oscillator, E is
the photon energy and Ey is the dispersion energy which measures the average
strength of the inter band optical transition. Equation (2.61) can be written as:

| _E;-E' E, E?

n -1 E,E, E, E.,

(2.62)

7 is plotted against E?, one expects to get a straight line having a slope

Ed . ’
(EdEg)" and an intercept — . From the slope and the intercept one may easily
P E
0

determine Eq and Eq4. The density of valence electrons, ny is obtained from a model

by C.Ance et al. [42]

E%
n, =0.0143-———— (2.63)
c©@-1)

where € (0) is taken to be the square of the saturated refractive index in the long
wavelength region. This model enables the estimation of the hydrogen content by

using the following relation:

In, ‘/?
L D 2.64
Cu 3 ns[ 2.8 @64

where ng is the density of valence electrons in the crystal silicon which is taken to be
2x10%electrons/cm’. The dispersion energy was also found to obey [41,43] the
empirical relationship,

Eq = BNcZ.Ny (2.65)
where N is the coordination number of cation surrounding an anion, Z, is the formal
chemical valence of an anion and N, is the effective valence electron per anion. The
constant B was found to be 0.37+£0.04eV for covalent materials and

0.26+0.03eV for ionic materials. Using equation (2.65) one can also find out N
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2.10 Hydrogenated Amorphous Silicon and Dangling Bonds:-

Amorphous silicon, for example, contains dangling bonds of about 5x10'/cm’ as
recorded by ESR measurements [44]. The electron energy levels of the dangling
bonds (unpaired electrons) lie in between the valence and conduction band states of
the fully paired bonded electrons. These states in the gap contribute to optical
absorption and electrical conduction processes masking the measurement of energy
gap by either process. Further, there is a large density of gap states, which act as fast
non-radiative recombination centers with the result that the photoconductivity or
photoluminescence is small in pure a-Si. Finally, the Fermi level, which is
essentially pinned by the gap states, does not move significantly when trace
impurities of the conventional shallow donor or acceptor types are incorporated.
Dangling bond densities may be reduced to some extent by annealing amorphous

silicon at higher temperature [45]. The assumption here is that the annealing effects

are due to the healing of dangling bonds by uction and rearrang of the

amorphous network. However, it was established that under certain conditions the

effects of annealing in reducing dangling bonds are not much.

If dangling silicon bonds cannot be paired to each other, the opportunity still exists
to pair them with other atomic orbital. Hydrogen appears to be most suitable for this
purpose. Following the success of the glow discharge plasma decomposition of
silane (SiHy), several other procedures have also evolved for incorporating hydrogen
into a-Si. These include reactive sputtering with hydrogen containing gas, proton
implantation etc. In all cases it is presumed that hydrogen passivates the dangling

bonds, thereby revealing the interesting properties of intrinsic a-Si. [46] Nuclear
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reaction and infrared transmission studies shows that incorporation of hydrogen
atoms in a-Si matrix reduces 5x10' - 2x10% free spin concentration (EPR) of a-Si.
[47]. Many intrinsic properties of a-Si:H have already been studied. These include
thermally activated conductivity, optical absorption edge, Photoluminescence,
electroluminescence and photoconductivity. In addition, the standard shallow donors
and acceptors have been shown to dope a-Si:H to be ‘n’ type or ‘p’ type respectively.
The phenomena of interest to single crystal silicon now become possible to study
with a-Si. Extrinsic conductivily: thermopower, Hall effect, photoconductivity have
all been measured for a-Si. Schottky barrier and pn junction diodes have been
fabricated with amorphous silicon. When operated as solar cells these diodes behave
almost like corresponding crystal devices.

Hydrogen and other additives might besides passivating the gap states, also play
active roles by enlarging the band gap, changing the electron lattice-coupling etc.
How much hydrogenation is needed to reveal the most interesting phenomena is still

open to questions.
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