OPTICAL AND ELECTRICAL PROPERTIES OF POLYMERIC MATERIALS CONTAINING TIN BASED COMPOUNDS

BY
KODUKULA SRINIVAS

A dissertation submitted to
The Institute of Postgraduate Studies and Research
University of Malaya
for the Degree of
Doctor of Philosophy

INSTITUTE OF POSTGRADUATE STUDIES AND RESEARCH
UNIVERSITY OF MALAYA
KUALA LUMPUR
MALAYSIA
1999
DECLARATION

I hereby declare that the work reported in this thesis is my own unless specified and duly acknowledged by quotation.

10 April 1999

K.Srinivas
ACKNOWLEDGEMENTS

I would like to thank my supervisor, Professor Suri Radhakrishna for his advice, guidance, help, encouragement and motivation towards my well being in academic world. Words alone will not be sufficient to sum up his contribution towards my development.

I would also like to express my sincere gratitude and thanks to Prof. V. G. Kumar Das, my co-supervisor for his advice, guidance and helping me to finish my thesis.

I would like to thank Associate Prof. Abdul Kariem Arof for his help in discussions regarding my work and all my friends who helped me directly or indirectly for completion of my work.

Finally, I would like to thank my parents and brothers who always have been with me and also my wife for making this thesis a success.

K.SRINIVAS
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>VII</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>XII</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 1 INTRODUCTION</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Background</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Why PEO?</td>
<td>6</td>
</tr>
<tr>
<td>1.2 PEO Content, Electrical Conductivity and Glass Transition Temperature ($T_g$)</td>
<td>8</td>
</tr>
<tr>
<td>1.3 What are Polymer Electrolytes?</td>
<td>10</td>
</tr>
<tr>
<td>1.4 Multiphase Behavior</td>
<td>11</td>
</tr>
<tr>
<td>1.5 Description of Polymer Structure and Mobility</td>
<td>14</td>
</tr>
<tr>
<td>1.6 Phase Changes</td>
<td>14</td>
</tr>
<tr>
<td>1.7 Mass Transport in Elastomer Phase</td>
<td>15</td>
</tr>
<tr>
<td>1.8 Factors which Determine the Conductivity</td>
<td>16</td>
</tr>
<tr>
<td>1.8.1 Tortuosity Factor</td>
<td>16</td>
</tr>
<tr>
<td>1.8.2 Effective Mobile Ion Concentration</td>
<td>17</td>
</tr>
<tr>
<td>1.8.3 Transport Numbers</td>
<td>17</td>
</tr>
<tr>
<td>1.9 Conduction Mechanism</td>
<td>18</td>
</tr>
<tr>
<td>1.9.1 Some Empirical Relationships:</td>
<td>19</td>
</tr>
<tr>
<td>1.9.2 Free Volume Theory and Configurational Entropy Models</td>
<td>23</td>
</tr>
<tr>
<td>1.9.3 Dynamic Bond Percolation Model: A Microscopic Theory</td>
<td>24</td>
</tr>
<tr>
<td>1.10 Solid State Batteries</td>
<td>25</td>
</tr>
<tr>
<td>1.11 Aims of the Present Work</td>
<td>28</td>
</tr>
</tbody>
</table>

iv
CHAPTER 2  EXPERIMENTAL METHODS

2.1 Materials and Methods
   2.1.1 Starting Materials
   2.1.2 Preparation of Polymer Electrolyte Films
   2.1.3 Preparation of Composite Cathodes
   2.1.4 Cell Fabrication
   2.2 Characterization Techniques
      2.2.1 UV-Visible Spectroscopy
      2.2.2 Infrared Spectroscopy
      2.2.3 Differential Thermal Analysis
      2.2.4 X-Ray Diffraction
      2.2.5 Scanning Electron Microscopy
      2.2.6 Energy Dispersive Analysis of X-rays (EDAX)
      2.2.7 Impedance Spectroscopy (IS)
      2.2.8 Cell Characterization and Discharge

CHAPTER 3  CHARACTERISTICS OF Ph₃SnCl doped PEO films

3.1 Introduction
   3.2 UV - Visible Spectral Analysis
   3.3 IR - Spectral Analysis
   3.4 DTA Analysis
   3.5 XRD Analysis
   3.6 Impedance Spectroscopy Analysis
      3.6.1 Room Temperature Dependence of Electrical Conductivity
      3.6.2 Temperature Dependence of Electrical Conductivity
   3.7 SEM-EDAX Analysis
   3.8 Possible Conduction Mechanism
   3.9 Electrochemical Cell Characterization
CHAPTER 4  CHARACTERISTICS OF PEO- DIBUTYL Tin BIS{P-[N-(3,4-DINITRO PHENYL)]AMINO BENZOATE} AND PEO- DIOCTYL Tin BIS{P-[N-(3,4-DINITRO PHENYL)]AMINO BENZOATE}

4.1 Introduction 73
4.2 UV - Visible Spectral Analysis 73
4.3 IR - Spectral Analysis 75
4.4 XRD Analysis 78
4.5 Impedance Spectroscopy 80
   4.5.1 Room Temperature Dependence of Electrical Conductivity 80
   4.5.2 Temperature Dependence of Electrical Conductivity 88
4.6 SEM-EDAX Analysis 92
4.7 Electrochemical Cell Characterization 95

CHAPTER 5  CHARACTERISTICS OF PVC-Ph$_3$SnCl 98

5.1 Introduction 98
5.2 XRD Analysis 99
5.3 Impedance Spectroscopy 102
5.4 EDAX Analysis 106
5.5 Electrochemical Cell Characterization 107

Summary and Conclusions 109

References 112
LIST OF TABLES

1.1 Different methods of ion incorporation into polymers 3

2.1 Different weight compositions of PEO - Ph₃SnCl:EC:PC 32

2.2 List of experiments that were carried out in doing this work. 35

3.1 Ionic conductivity values calculated from the Cole-Cole plots of PEO-Ph₃SnCl 57

3.2 Conductivity data of PEO-Ph₃SnCl with different molecular weights of PEO 63

3.3 Conductivity values of different samples of PEO - Ph₃SnCl:EC:PC 64

3.4 Data for the generation of ln(σT) versus 1/T plots for PEO – Ph₃SnCl Systems. 64

3.5 Activation energy values, E_A, for PEO-Ph₃SnCl. 65

3.6 Open circuit voltage for the fabricated cells. 71

3.7 Cell capacity of fabricated cells 72

4.1 Ionic conductivity values from the Cole - Cole plots of PEO-dibutyltin bis[p-[N-(3,4-dinitro phenyl)]amino benzoate] and PEO-dioctyltin bis[p-[N-(3,4-dinitro phenyl)]amino benzoate]. 86

4.2 Conductivity values of different compositions of PEO - dibutyltin bis[p-[N-(3,4-dinitro phenyl)]amino benzoate] : EC:PC and PEO - dioctyltin bis[p-[N-(3,4-dinitro phenyl)]amino benzoate] : EC: PC 88

4.3 Data for the generation of ln(σT) versus 1/T plots for PEO - dibutyltin bis[p-[N-(3,4-dinitro phenyl)]amino benzoate] 89

4.4 Data for the generation of ln(σT) versus 1/T plots for PEO - dioctyltin bis[p-[N-(3,4-dinitro phenyl)]amino benzoate] 90

4.5 Activation energy values, E_A, for PEO- dibutyltin bis[p-[N-(3,4-dinitro phenyl)]amino benzoate] 91

4.6 Activation energy values, E_A, for PEO- dioctyltin bis[p-[N-(3,4-dinitro phenyl)]amino benzoate] 91
4.7 Open circuit voltage for the fabricated cells 96
4.8 Cell capacity of fabricated cells 97
5.1 Ionic conductivity values of PVC-\( \text{Ph}_3\text{SnCl} \) from the Cole-Cole plots. 105
5.2 Ionic conductivity values from the Cole-Cole plots of PVC-\( \text{Ph}_3\text{SnCl}:\text{EC}:\text{PC} \) 105
# List of Figures

1.1 Schemes of electrochemical doping process of polyacetylene, polythiophene and polypyrrole 2
1.2 Schematic model of poly (ethylene oxide) 7
1.3 Variation in conductivity with salt concentration for an amorphous poly (ethylene oxide) polymer containing LiClO₄ 9
1.4 Example of a polymer microstructure, showing amorphous regions of PEO 13
1.5 Phase diagram for PEO - LiAsF₆ system 16
1.6 Schematic representation of Crystalline and amorphous regions in PEO. 20

1.7 a) Solid State Polymer battery 27
1.7 b) Typical battery characteristic 27
2.1 Equivalent circuit containing R, C1 and C2 42
2.2 Impedance response of circuit containing R, C1 and C2 42

3.1 UV-Visible absorption spectrum for a) pure PEO film and b) PEO-Ph₃SnCl film c) PEO- Ph₃SnCl:EC:PC film 46
3.2 UV-Visible absorption spectra of two differing concentrations of Ph₃SnCl (a & b) and PEO- Ph₃SnCl:EC:PC(c&d) in acetonitrile. 46
3.3 Infrared spectrum of pure PEO 48
3.4 Infrared spectrum of pure Ph₃SnCl 48
3.5 Infrared spectrum of PEO-Ph₃SnCl 49
3.6 DTA plot for pure PEO 50
3.7 DTA plots for the PEO-Ph₃SnCl system with different Sn/EO compositions. 51
3.8 XRD patterns (a – d) for PEO - Ph₃SnCl system with differing Sn/EO ratios. 54
3.9 XRD patterns (a – d) for PEO – Ph₃SnCl system with different molecular weights of PEO. 56
3.10 Cole – Cole plots (a – d) for different Sn/EO ratios in the PEO – Ph₃SnCl systems 60
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.11</td>
<td>Cole – Cole plots (a – d) for PEO – Ph₃SnCl system with different molecular weights of PEO</td>
<td>62</td>
</tr>
<tr>
<td>3.12</td>
<td>Compositional dependence of conductivity of PEO-Ph₃SnCl</td>
<td>62</td>
</tr>
<tr>
<td>3.13</td>
<td>Arrhenius plots for the PEO-Ph₃SnCl system of varying compositions.</td>
<td>65</td>
</tr>
<tr>
<td>3.14</td>
<td>SEM micrograph for Pure PEO</td>
<td>67</td>
</tr>
<tr>
<td>3.15</td>
<td>SEM micrograph for PEO-Ph₃SnCl: EC: PC</td>
<td>67</td>
</tr>
<tr>
<td>3.16</td>
<td>EDAX data for PEO-Ph₃SnCl</td>
<td>68</td>
</tr>
<tr>
<td>3.17</td>
<td>Possible conduction mechanism in PEO-Ph₃SnCl system</td>
<td>69</td>
</tr>
<tr>
<td>3.18</td>
<td>Discharge curves for the fabricated electrochemical cells using different cathode materials</td>
<td>71</td>
</tr>
<tr>
<td>4.1</td>
<td>UV-Visible spectrum for a) pure PEO b) PEO - dibutyltin bis{p-[N-(3,4-dinitro phenyl)]amino benzoate} and c) dibutyltin bis{p-[N-(3,4-dinitro phenyl)]amino benzoate} in acetonitrile.</td>
<td>74</td>
</tr>
<tr>
<td>4.2</td>
<td>UV-Visible absorption spectrum for dibutyltin bis{p-[N-(3,4-dinitro phenyl)]amino benzoate} in acetonitrile at different concentrations</td>
<td>74</td>
</tr>
<tr>
<td>4.3</td>
<td>Infrared spectrum of pure dibutyltin bis{p-[N-(3,4-dinitro phenyl)]amino benzoate}</td>
<td>76</td>
</tr>
<tr>
<td>4.4</td>
<td>Infrared spectrum of PEO- dibutyltin bis{p-[N-(3,4-dinitro phenyl)]amino benzoate}</td>
<td>76</td>
</tr>
<tr>
<td>4.5</td>
<td>Infrared spectrum of Pure dioctyltin bis{p-[N-(3,4-dinitro phenyl)]amino benzoate}</td>
<td>77</td>
</tr>
<tr>
<td>4.6</td>
<td>Infrared spectrum of PEO- dioctyltin bis{p-[N-(3,4-dinitro phenyl)]amino benzoate}</td>
<td>77</td>
</tr>
<tr>
<td>4.7</td>
<td>X-ray diffractogram for pure PEO</td>
<td>78</td>
</tr>
<tr>
<td>4.8</td>
<td>X-ray diffractogram for PEO - dibutyltin bis{p-[N-(3,4-dinitro phenyl)]amino benzoate (Sn/EO = 0.031)</td>
<td>79</td>
</tr>
<tr>
<td>4.9</td>
<td>X-ray diffractogram for PEO - dioctyltin bis{p-[N-(3,4-dinitro phenyl)]amino benzoate (Sn/EO = 0.031)</td>
<td>79</td>
</tr>
<tr>
<td>4.10</td>
<td>Cole - Cole plots (a - e) for different compositions of PEO - dibutyltin bis{p-[N-(3,4-dinitro phenyl)]amino benzoate} system</td>
<td>83</td>
</tr>
</tbody>
</table>
4.11 Cole - Cole plots (a - e) for different compositions of PEO-dioctyltin bis[p-N-(3,4-dinitro phenyl)]amino benzoate] system

4.12 Compositional dependence of conductivity of PEO- dibutyltin bis[p-N-(3,4-dinitro phenyl)]amino benzoate]

4.13 Compositional dependence of conductivity of PEO- dioctyltin bis[p-N-(3,4-dinitro phenyl)]amino benzoate]

4.14 Arrhenius plots for different compositions of PEO- dibutyltin bis[p-N-(3,4-dinitro phenyl)]amino benzoate] system

4.15 Arrhenius plots for different compositions of PEO-dioctyltin bis[p-N-(3,4-dinitro phenyl)]amino benzoate] system

4.16 SEM micrograph of PEO-dibutyltin bis[p-[N-(3,4-dinitro phenyl)]amino benzoate]:EC:PC

4.17 SEM micrograph of PEO-dioctyltin bis[p-[N-(3,4-dinitro phenyl)]amino benzoate]:EC:PC

4.18 EDAX data for PEO - PEO-dibutyltin bis[p-[N-(3,4-dinitro phenyl)]amino benzoate]:EC:PC

4.19 EDAX data for PEO - PEO-dioctyltin bis[p-[N-(3,4-dinitro phenyl)]amino benzoate]:EC:PC

4.20 Discharge curves for the fabricated cells

5.1 XRD pattern for pure PVC

5.2 XRD pattern for pure Ph3SnCl

5.3 XRD patterns (a - d) for different compositions of PVC-Ph3SnCl

5.4 Cole - Cole plots (a - b) for PVC - Ph3SnCl polymer electrolyte systems with different composition ratios.

5.5 Cole - Cole plots (a - d) for PVC-Ph3SnCl plasticized polymer electrolyte System

5.6 EDAX data for pure PVC

5.7 EDAX data for pure PVC - Ph3SnCl

5.8 Discharge characteristics of fabricated cell
Abstract

ABSTRACT

Modified poly(ethylene oxide) (PEO) as a potential solid state electrolyte material for batteries has been investigated through doping with selected organotin compounds. The organotin dopants studied were triphenyltin chloride (Ph$_3$SnCl), dibutyltin bis [p-[N-(3,4-dinitro phenyl)] amino benzoate and dioctyltin bis [p-[N-(3,4-dinitro phenyl)] amino benzoate; the first mentioned compound was also tested as a dopant for polyvinyl chloride PVC. Tin incorporation in the polymers was established by several physical techniques. UV-Visible spectroscopic analysis of the Ph$_3$SnCl -doped electrolyte film showed unequivocally the presence of a peak at 268 nm which, is characteristic of the dopant. Likewise in the infrared, the above-mentioned film showed bands at 698 and 735 cm$^{-1}$, which are also given by pure Ph$_3$SnCl. DTA analysis showed a distinct broadening of the peak area with increase in the dopant concentration. SEM and EDAX studies performed on all the doped films confirmed the presence of tin.

Different compositions of the tin doped electrolytes (Sn/EO = 0.015, 0.031, 0.063, 0.125) were prepared and conductivity studies on these were performed using impedance spectroscopy, with measurements in the frequency range 40 Hz to 100KHz. From the measurements it was found that the best conductivity of 3.6 x10$^{-7}$ S/cm was obtained for the composition Sn/EO = 0.031. However, it proved possible to increase the conductivity by at least one or two orders of magnitude by the co-addition of plasticizers such as ethylene carbonate (EC) and propylene carbonate (PC), thereby rendering the modified PEO more suitable as an electrolyte material for the solid state batteries. The best conductivity thus attained was of the order of 10$^5$ S/cm for the film of composition Ph$_3$SnCl – PEO: EC: PC (85: 13: 2). The effect of different molecular weights of PEO was also studied, and it was found that the PEO with a
molecular weight of 900000 gave the best conductivity of $1.1 \times 10^{-5}$ S/cm. X-ray diffraction analysis confirmed the disruption of the crystalline order of PEO upon interaction with the tin dopants, and some correlation between increased amorphous character of the PEO and increased electrical conductivity was noted in the doped films. The temperature dependent studies for the conductivity showed an Arrhenius pattern, with an activation energy of 0.21 eV, which latter is strongly indicative of ionic conductivity rather than electrical conductivity. This implicates either a direct charge mobility on the part of the $\text{Ph}_3\text{SnCl}$ dopant in the PEO matrix, which may be conceived in terms of an ion-pair formulation for the compound, or an indirect charge mobility via the ion-hopping mechanism involving firm interaction of the tin dopant with the oxygen in the polymer matrix.

A similar pattern of results was also obtained with dibutyltin bis {p-[N-(3,4-dinitro phenyl)] amino benzoate} and dioctyltin bis {p-[N-(3,4-dinitro phenyl)] amino benzoate} as dopants. However, the conductivity was not as good as that given by the $\text{Ph}_3\text{SnCl}$ compound. Another study was done by preparing electrolytes with a different host polymer, namely PVC. The presence of $\text{Ph}_3\text{SnCl}$ in the PVC matrix was confirmed by XRD and EDAX.

The best conductivity samples from each of the above mentioned systems were used in the fabrication of a primary cell using Sn metal as anode and MnO$_2$ or iodine as the cathode material. The above cells showed an open circuit voltage (OCV) of about 0.85 V which is close to the theoretical value. Hence it can be concluded that organotin compounds have the potential for the fabrication of primary cells at ambient temperatures.