CONTENTS

ABSI	RAC1	1
ACKI	NOWLEDGEMENT	11
CONT	TENTS.	111
LIST	OF FIGURES.	VIII
LIST	OF TABLES	X
ABBR	REVIATIONS	XII
СНАР	PTER 1	1
INTR	ODUCTION	1
1.1	ANYCAST SERVICE FOR THE INTERNET PROTOCOL VERSION 6 (IPV6)	1
1.2	Anycast Routing	2
1.3	MOTIVATION	2
1.4	THESIS OBJECTIVES	3
1.5	THESIS SCOPE	3
1.6	THESIS ORGANIZATION.	5
СНАР	PTER 2	7
INTER	RNET PROTOCOL VERSION 6 (IPV6)	7
2.1	MOTIVATION	7
2.2	IPv6 Features	10

2.3	DIFFERENCES BETWEEN IPv4 AND IPv6	
2.4	IPv6 FORMATS AND FUNCTIONS	1
2.4.	I IPv6 Packet	
2.4.2	2 IPv6 Header	
2.4.3	3 Differences between the IPv4 and IPv6 headers	<i>E</i>
2.4.4	Extension Headers	
2.5	IPv6 Addressing Architecture	21
2.5.1	Issues in current IPv4 Addressing Architecture	21
2.5.2	Pv6 Addressing	22
2.5.3	Addressing Model	23
2.5.4	Address Type Specification	24
2.5.5	IPv6 Prefixes	25
2.5.6	Unicast Address	25
2.5.7	Multicast Address	30
2.5.8	Anycast Address	32
СНАРТ	TER 3	34
MULTI	CAST TREES	34
3.1	MULTICAST LISTENER DISCOVERY (MLD)	34
3.2	MULTICAST DISTRIBUTION TREES	36
3.2.1	Source-based Tree	36
3.2.2	Shared Tree	38
3.3	MULTICAST ROUTING PROTOCOLS	39
3.3.1	Distance Vector Multicast Routing Protocol (DVMRP)	39
3.3.2	Multicast Open Shortest Path First (MOSPF)	41
3.3.3	Core Based Tree (CBT)	42
3.3.4	Protocol Independent Multicast Version 2 (PIM)	43
).		

CHAPTER 4 FUZZ SET THEORY AND FUZZY LOGIC CONTROL. 42 41 FUZZY LOGIC 47 4.2 FUZZY SETS..... 43 FUZZY SET OPERATIONS 49 44 LINGUISTIC VARIABLES AND FUZZY IF-THEN RULES 50 45 FUZZY IF-THEN RULES..... 46 FUZZY LOGIC CONTROLLER 52 4.7 FUZZY RULE BASE FUZZY INFERENCE ENGINE 4.8 49 FUZZIFIER 53 4 10 DEFUZZIFIERS..... CHAPTER 5 ANYCASTING.......57 5.1 BENEFITS OF ANYCASTING 57 5.2 ISSUES OF ANYCASTING ______58

Limitations / Properties in the current Protocols 58

Upper Laver Protocol Issues 60

CHAPTER 6

PROPOSED NEAREST PIM-SM EXTENSION 64

RIPNG EXTENSION

WORKS ON ANYCASTING

PIM-SM EXTENSION

5.2.1

5.2.2

5.3

6.1

6.2

6.3	PROPOSED NEAREST PIM-SM EXTENSION	67
6.4	LOAD-BALANCING SCHEME	65
СНАРТ	TER 7	77
SIMUL	ATION ENVIRONMENT FOR ANYCAST ROUTING	77
7.1	PHASES OF IMPLEMENTATIONS.	77
7.2	OVERVIEW OF SIMULATION ENVIRONMENTS	78
7.3	NETWORK SIMULATION COMPONENTS	79
7.4	OBJECTS AND CLASSES	81
7.5	TESTING AND IMPLEMENTATION	83
7.5.1	Neighbor Discovery and Stateless Autoconfiguration	84
7.5.2	RIPng	86
7.5.3	RIPng extension	88
7.5.4	PIM-SM extension	92
7.5.5	Load-balancing Scheme	94
7.5.6	Nearest PIM-SM extension	97
СНАРТ	ER 8	100
PERFO	RMANCE EVALUATION OF THE PROPOSED NEAREST	
PIM-SM	1 EXTENSION FOR ANYCAST ROUTING	100
8.1	SIMULATIONS RESULTS	100
8.1.1	End-To-End Delay	106
8.1.2	Packet Loss Percentage	122
8.1.3	Sunmary	129

CHAPTER 913		13
CONC	CLUSIONS AND FUTURE WORK	13
9.1	SUMMARY OF CONTRIBUTIONS	13
9.2	SUGGESTIONS FOR FUTURE RESEARCH	13
REFE	RENCES	13

LIST OF FIGURES

FIGURE 2.1	IPv6 packet with all extension headers	15
FIGURE 2.2	IPV4 AND IPV6 HEADER	16
FIGURE 2.3	IPv6 Extension headers	19
FIGURE 2.4	IPv4 ADDRESS CLASSES	22
FIGURE 2.6	AGGREGATION-BASED IP ADDRESSES	27
Figure 2.7	SUBDIVIDING THE NLA ADDRESS SPACE	28
FIGURE 2.8	THE IPV6 MULTICAST ADDRESSES	0
Figure 2.9	THE MODIFIED IPV6 MULTICAST ADDRESS USING A 32-BIT GROUP ID	12
FIGURE 2.10	THE SUBNET-ROUTER ANYCAST ADDRESS	13
FIGURE 3.1	THE TREE ESTABLISHMENT PROCESSES FOR SOURCE-BASED TREE	17
FIGURE 3.2	TREE ESTABLISHMENT PROCESSES FOR SHARED TREE	8
FIGURE 3.3	TREE ESTABLISHMENT PROCESSES FOR DVMRP	Ю
FIGURE 3.4	THE TREE ESTABLISHMENT PROCESSES FOR MOSPF	11
FIGURE 3.5	TREE ESTABLISHMENT PROCESSES FOR CORE BASED TREE	13
FIGURE 3.6	TREE ESTABLISHMENT PROCESSES FOR PIM-SM	15
FIGURE 4.1	THE BASIC STRUCTURE OF A FUZZY LOGIC CONTROLLER (FLC)5	2
FIGURE 6.1	A SCENARIO OF RIPNG EXTENSION FOR ANYCAST ROUTING	5
FIGURE 6.2	DEFINITIONS FOR FUNCTIONS F(.) AND G(.)7	1
FIGURE 6.3	THE MEMBERSHIP FUNCTION OF THE TERM SET T(Q)	1
FIGURE 6.4	THE MEMBERSHIP FUNCTION OF THE TERM SET T(ΔQ)7	2
FIGURE 6.5	THE MEMBERSHIP FUNCTION OF THE TERM SET T(Y)	3
FIGURE 6.6	THE PRODUCT-SUM INFERENCE METHOD	5
FIGURE 7.1	JANETSIM NETWORK SIMULATOR OBJECTS7	8
FIGURE 7.2	TOPOLOGY USED IN TESTING NEIGHBOR DISCOVERY AND STATELESS	
AUTONCON	REFIGURATION IN IPV68	4
FIGURE 7.3	TOPOLOGY USED FOR TESTING RIPNG8	6
FIGURE 7.4	TOPOLOGY USED IN TESTING RIPNG EXTENSION FOR ANYCAST	9
FIGURE 7.5	TOPOLOGY USED IN TESTING PIM-SM EXTENSION9	2

FIGURE 7.6	TOPOLOGY USED IN TESTING LOAD-BALANCING SCHEME UNDER NORMAL CONDITION
	94
FIGURE 7.7	TOPOLOGY USED IN TESTING FUZZY SHORTEST PATH IN CONGESTION95
FIGURE 7.8	TOPOLOGY USED IN TESTING NEAREST PIM-SM EXTENSION97
FIGURE 8.1	MCI TOPOLOGY100
FIGURE 8.2	TOPOLOGY A104
FIGURE 8.3	TOPOLOGY B
FIGURE 8.4	TOPOLOGY C
FIGURE 8.5	TOPOLOGY D
FIGURE 8.6	TOPOLOGY E
FIGURE 8.7	AVERAGE END-TO-END DELAY VS. NUMBER OF SOURCES FOR TOPOLOGY A 108
FIGURE 8.8	AVERAGE END-TO-END DELAY VS. NUMBER OF SOURCES FOR TOPOLOGY B 111
FIGURE 8.9	AVERAGE END-TO-END DELAY VS. NUMBER OF SOURCES FOR TOPOLOGY C 114 $$
FIGURE 8.10	AVERAGE END-TO-END DELAY VS. NUMBER OF SOURCES FOR TOPOLOGY D . 117
FIGURE 8.11	AVERAGE END-TO-END DELAY Vs. Number of Sources for Topology E $_{\circ}120$
FIGURE 8.12	PACKET LOSS PERCENTAGE (%) VS. NUMBER OF SOURCES FOR TOPOLOGY A . 123
FIGURE 8.13	PACKET LOSS PERCENTAGE (%) VS. NUMBER OF SOURCES FOR TOPOLOGY B .124
FIGURE 8.14	PACKET LOSS PERCENTAGE (%) VS. NUMBER OF SOURCES FOR TOPOLOGY E 127

TABLE 7.22	SIMULATION RESULTS FOR TESTING SHORTEST-PATH SCHEME UNDER NORMAL
	CONDITION96
TABLE 7.23	SIMULATION RESULTS FOR TESTING SHORTEST-PATH SCHEME IN CONGESTION96
TABLE 7.24	SIMULATION RESULTS USING PIM-SM EXTENSION98
TABLE 7.25	SIMULATION RESULTS USING NEAREST PIM-SM EXTENSION98
TABLE 8.1	VBR SOURCE CHARACTERISTICS
TABLE 8.2	ANYCAST SERVICE PROVIDER'S SOURCE CHARACTERISTICS101
TABLE 8.3	ANYCAST ROUTING SCHEMES AND ITS MODE102
TABLE 8.4	AVERAGE END-TO-END DELAY FOR EACH SIMULATION SESSIONS IN TOPOLOGY A $\! 107$
TABLE 8.5	AVERAGE END-TO-END DELAY FOR EACH SIMULATION SESSIONS IN TOPOLOGY B 110
TABLE 8.6	AVERAGE END-TO-END DELAY FOR EACH SIMULATION SESSIONS IN TOPOLOGY C 113
TABLE 8.7	AVERAGE END-TO-END DELAY FOR EACH SIMULATION SESSIONS IN TOPOLOGY D116
TABLE 8.8	AVERAGE END-TO-END DELAY FOR EACH SIMULATION SESSIONS IN TOPOLOGY E 119
TABLE 8.9	Packet loss percentage (%) for each simulation sessions in Topology A $_{\cdot\cdot}122$
TABLE 8.10	Packet loss percentage (%) for each simulation sessions in Topology B $_{\cdot\cdot}124$
TABLE 8.11	PACKET LOSS PERCENTAGE (%) FOR EACH SIMULATION SESSIONS IN TOPOLOGY E 126

ABBREVIATIONS

ARP Address Resolution Protocol

ATM Asynchronous Transfer Mode

ATM LSR Asynchronous Transfer Mode Label Switching Router

BGP Border Gateway Protocol

BSR BootStrap Router

B-TE Broadband Terminal Equipment

CBT Core Based Tree

CIDR Classless Inter-Domain Routing

C-RP Candidate-Rendezvous Point

DES-CBC Data Encryption Standard-Cipher Block Chaining

DNS Domain Name System

DNSSEC Domain Name System Security

DHCP Dynamic Host Configuration Protocol

DR Designated Router

DVMRP Distance Vector Multicast Routing Protocol

EIGRP Enhanced Interior Gateway Routing Protocol

ESP Encapulating Security Payload

EUI-64 64-bit Extended Unique Identifier

FLC Fuzzy Logic Controller

FP Format Prefix

GIA Global Internet Protocol-Anycast

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IGMPv2 Internet Group Management Protocol Version 2

IGMPv3 Internet Group Management Protocol Version 3

IKE Internet Key Exchange

IP Internet Protocol

IPsec Internet Protocol Security

IPv6 Internet Protocol Version 6

IPv4 Internet Protocol Version 4

IPX Internetwork Packet Exchange

ISP Internet Service Provider

ICMPv4 Internet Control Message Protocol Version 4
ICMPv6 Internet Control Message Protocol Version 6

LAN Local Area Network

MAC Media Access Control

MLD Multicast Listener Discovery

MLDv2 Multicast Listener Discovery Version 2

MOSPF Multicast Open Shortest Path First

MTU Maximum Transmission Unit

NAT Network Address Translator

NLA Next-level Aggregators

ND Neighbor Discovery

NSAP Network Service Access Point

NTP Network Time Protocol

OSPF Open Shortest Path First

PDU Protocol Data Unit

PIM Protocol Independent Multicast

PIM-SM Protocol Independent Multicast – Sparse Mode

PIM-DM Protocol Independent Multicast - Dense Mode

RP Rendezvous Point

RPF Reverse-path Forwarding

SPT Shortest Path Tree

QoS Quality of Service

RIPng Routing Information Protocol next generation

RSVP Resource ReSerVation Protocol

SLA Site-level Aggregators

TCP Transmission Control Protocol

TLA Top-level Aggregators

TLV Type-length-value

TOS Type of Service

UDP User Datagram Protocol

VBR Variable Bit Rate

WAN Wide Area Network