# LIST OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF CONTENTS</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xxiii</td>
</tr>
</tbody>
</table>

## CHAPTER ONE: INTRODUCTION

1.1 *Salmonella typhi*  
1.2 Typhoid fever  
1.3 Diagnosis and treatment of typhoid fever  
1.4 Antibiotics  
  1.4.1 Characteristics of antibiotics  
  1.4.2 Aminoglycosides  
  1.4.3 Streptomycin (Sm)  
  1.4.4 Mechanisms of Sm resistance  
    1.4.4.1 Sm-modifying enzymes  
    1.4.4.2 Alterations in ribosomal Sm binding site  
    1.4.4.3 Mutations interfering with Sm uptake  
1.5 Epidemiology of antibiotic resistance  
1.6 Origin of antibiotic resistance  
1.7 Transfer of antibiotic resistance genes  
1.8 R plasmids  
1.9 Transposable genetic elements (TGE)  
1.10 Transposon Tn21  
1.11 IS elements  
1.12 Integrons  

ix
1.13 M13mp18 and M13mp19 bacteriophages
1.14 Previous studies on pST8
1.15 Objectives of this study

CHAPTER TWO: MATERIALS AND METHODS

2.1 Bacterial strains
2.2 Plasmids and phage
2.3 Materials
2.4 Media, antibiotic solutions, and stock solutions
  2.4.1 Luria-Bertani (LB) medium (Sambrook et al., 1989)
  2.4.2 SOB medium
  2.4.3 SOC medium
  2.4.4 Mueller Hinton (MH) agar
  2.4.5 B agar (Sambrook et al., 1989)
  2.4.6 2X TY
  2.4.7 Antibiotic stock solutions
  2.4.8 Solutions for agarose gel electrophoresis
    2.4.8.1 Tris-borate EDTA (TBE) buffer, pH 8.3
      (Sambrook et al., 1989)
    2.4.8.2 50X Tris-acetate EDTA (TAE) buffer
    2.4.8.3 6X Bromophenol blue (BPB) loading dye
  2.4.9 Common solutions for DNA extraction, cloning, and transformation
2.5 Solutions for hybridization experiments
  2.5.1 Solutions for Southern blotting
    2.5.1.1 Depurination solution
    2.5.1.2 Denaturation solution
    2.5.1.3 Neutralization solution
    2.5.1.4 Solutions for hybridization and blot washing
    2.5.1.5 Hybridization buffer
    2.5.1.6 Primary wash buffer (without urea)
    2.5.1.7 Secondary wash buffer (2X SSC)
2.5.2 Solutions for labelling DNA probes 46
2.5.3 Signal generation and detection 46

2.6 Solutions for M13mp18 subcloning 46
2.6.1 Xgal 46
2.6.2 IPTG (0.1 M) 47
2.6.3 20% (w/v) PEG, 2.5 M NaCl 47
2.6.4 SDS-formamide dye mix (Young, 1984) 47

2.7 Sterilization techniques 47
2.7.1 Heat sterilization 47
2.7.2 Steam sterilization 48
2.7.3 Membrane sterilization 48

2.8 Plating techniques 48

2.9 Maintenance and purification of bacterial strains 48

2.10 Small scale rapid extraction of plasmid DNA (miniprep) 48

2.11 Large-scale extraction and purification of covalently closed circular (ccc) DNA 49

2.12 Estimation of DNA concentration 51

2.13 Restriction endonuclease digestions of DNA 51

2.14 Agarose gel electrophoresis 52

2.15 Recovery of DNA fragments from agarose gels 52
2.15.1 Electroelution (Sambrook et al., 1989) 52
2.15.2 Recovery of DNA fragments from agarose gels by the GENECLEAN II kit 53

2.16 Ligation of DNA fragments with compatible ends 53

2.17 Subcloning of the streptomycin resistance gene(s) (SmR) from PstI digested pCLS55 into pUC19 54
2.17.1 Comparison of pKan and pCLS55 after restriction endonuclease digestions 54
2.17.2 Preparation of PstI digested pCLS55 and pUC19 54
2.17.3 Shotgun subcloning of the fragment harbouring the SmR gene(s) into plasmid vector pUC19 54
2.17.4 Preparation of competent *E. coli* cells 54
2.17.5 Transformation 55
2.17.6 Analysis of transformants 55
2.18 Southern blotting and hybridization 56
2.18.1 Southern transfer of DNA (Southern, 1975) from agarose gel to nylon membrane 56
2.18.2 Direct labelling of DNA probes 56
2.18.3 Southern hybridization 58
2.18.4 Post-hybridization membrane washing 58
2.18.5 Signal generation and detection 58
2.19 Subcloning of the 2.5 kb *EcoRI* DNA fragment harbouring the *Sm*\(^R\) genes into M13mp18 59
2.19.1 Preparation of the *EcoRI* digested M13mp18 59
2.19.2 Gel-elution of the 2.5 kb *EcoRI* DNA fragment harbouring the *Sm*\(^R\) genes 59
2.19.3 Preparation of competent *E. coli* DH5\(\alpha\)F\(^{'}\) cells 59
2.19.4 Ligation of the *EcoRI* digested M13mp18 with the 2.5 kb *EcoRI* DNA fragment harbouring the *Sm*\(^R\) genes 60
2.19.5 Transfection of *E. coli* DH5\(\alpha\)F\(^{'}\) with the RF DNA of M13mp18 60
2.19.6 Complementary or C-test to confirm the opposite orientations of inserts in recombinant M13mp18 61
2.19.7 Purification of single-stranded template DNA of recombinant M13mp18 61
2.20 Subcloning of the 5.5 kb *SalI* DNA fragment from pCL55 into *SalI* digested pUC19 63
2.20.1 Preparation of the *SalI* digested pCL55 and pUC19 63
2.20.2 Ligation of the 5.5 kb *SalI* digested DNA fragment with *SalI* digested pUC19 63
2.20.3 Transformation 63
2.20.4 Analysis of transformants 63
2.21 DNA sequencing 63
  2.21.1 Non-isotopic automated DNA sequencing 63
  2.21.2 Polyacrylamide gel electrophoresis 64
  2.21.3 Analysis of nucleotide sequences 65

2.22 Flowcharts 66
  2.22.1 Flowchart of experiments to subclone the Sm$^R$ gene(s) into pUC19 66
  2.22.2 Flowchart of experiments to construct a restriction map of the 5.5 kb insert and to locate Sm$^R$ gene(s) to a smaller fragment 67
  2.22.3 Flowchart of experiments to subclone the Sm$^R$ gene(s) into M13mp18 vector, sequence the Sm$^R$ gene(s), and analyses of the nucleotide sequences 68

CHAPTER THREE: RESULTS 69
3.1 Comparison between pKan and pCLS55 69
3.2 Restriction patterns of pKan and pCLS55 69
3.3 Complete digestion of pCLS55 and pUC19
   with PstI 77
3.4 Elution of the excised fragments from pCLS55
   and linearized pUC19 77
3.5 Shot-gun subcloning of the Sm$^R$ gene(s) 77
3.6 Plasmid profiles of Ac$^R$Sm$^R$ transformants 80
3.7 Restriction patterns of recombinant pUC19 after
   PstI and SalI digestions 80
3.8 Complete digestion of pSR3 and pSR4 with SalI 85
3.9 Elution of the excised fragments from SalI-digested
   pSR3 and pSR4 85
3.10 Subcloning of the Sm$^R$ DNA fragment from pSR3 85
3.11 Plasmid profiles of the Ac$^R$Sm$^R$ transformants 88
3.12 Restriction analyses of recombinant pUC19 obtained
   after circularization of the 5.2 kb SalI fragment from pSR3 88
3.13 Complete digestion of pSR3a and RF DNA of M13mp18 with EcoRI

3.14 Subcloning of the 2.5 kb EcoRI fragment harbouring the SmR genes into M13mp18

3.15 Screening of the recombinant M13mp18

3.16 Confirmation of the opposite orientation of inserts in recombinant M13mp18 RF DNA

3.17 Southern hybridization with recombinant plasmids and phages

3.18 Isolation of single-stranded DNA from M13pSMR13 and M13pSMS16

3.19 Nucleotide sequences from M13pSMR13 and M13pSMS16

3.20 Analysis of the nucleotide sequence from M13pSMR13 and M13pSMS16

3.21 Subcloning of the 5.5 kb fragment from SalI-digested pCL5S55 harbouring SmR gene into SalI-digested pUC19

3.22 SalI-digestion of the recombinant pUC19

3.23 Isolation and sequencing of double-stranded pSR55

3.24 Partial nucleotide sequences from pSR55

3.25 Analysis of the nucleotide sequences from pSR55

CHAPTER FOUR: DISCUSSION AND CONCLUSION

4.1 Discussion

4.1.1 Localization of the SmR genes

4.1.2 Southern hybridization

4.1.3 Nucleotide sequences of the 2.5 kb SmR genes

4.1.4 IS26-like segment

4.2 Conclusion

REFERENCES