Appendix 1

Worksheet 1

Company:	Input Materials	Date: 3-12-1997
Don Brake (M) Sdn Bhd	Summary	

	Description of Input Materials				
Name/ID	Asbestos	Glass Fiber	Friction Dust	Rubber Crumb	Barytes
Form:	Light fiber	Light fiber	Light fiber	Granular	Fine particles
Hazard Potential: 1 Animal Toxicity Inhale Oral Skin	Yes	Yes	Yes	Yes	Yes
Annual consumption rate (kg/annum)	39,105	7,820	18,025	44,380	192,200
Purchase price (RM/kg)	1.25/kg	14.18/kg	4.90/kg	2.07/kg	0.73/kg
Annual cost (RM) ₂	48,881.25	110,887.6	88,322.5	91,866.6	140,306
Delivery mode	Lorry	Lorry	Lorry	Lorry	Lorry
Shipping container type ₃	Plastic bag	Plastic bag	Plastic bag	Plastic bag	Paper bag
Storage mode ₄	Warehouse	Warehouse	Warehouse	Warehouse	Warehouse
Transport mode 5	Forklift	Forklift	Forklift	Forklift	Forklift
Empty container disposal	Landfill	Landfill	Landfill	Landfill	Landfill
Expected shelf live	>5 years	>5 years	>5 years	>5 years	>5 years
Level of inventory maintained on site	≈15%	≈15%	≈15%	≈15%	≈15%
Would suppliers - accept expired material?	No	No	No	No	No
- accept shipping container? - revise expiration rate?	No No	No No	No No	No No	No No

¹ Indicate Yes or No

² Based on actual usage on 1998

² based of actual stage of 1794 ags, tanks, etc
4 e.g. outdoor, warehouse, underground, above ground etc
5 e.g. pump, forklift, pneumatic transport, conveyor, etc
6 e.g. crush and landfill, clean and recycle, return to supplier, etc

Worksheet 2

Company:		
Don Brake (M) Sdn Bhd	Products	Date: 3-12-1997
(iii) Sun Bild	Summary	

Attribute	Description
Name of product	Brake lining
Annual production rate (pcs/year)	≈ 0.5 million pieces
Annual revenues (RM)	≈ 24 million
On site storage mode ₁	Warehouse
Shipping container size and type2	Wrapped by plastic bag and put into carton
Shipping mode ₃	Forklift
Containers returnable? (Y/N)	No
Shelf life	> 10 years
Rework possible? (Y/N)	Yes
Would customer	100
relax specification? (Y/N)	No
accept larger containers? (Y/N)	No.

l e.g. outdoor, warehouse, underground, above ground, etc

² e.g. 002 drums, paper bags, tanks, etc

³ e.g. pump, forklift, pneumatic transport, conveyor, etc

Company:	Waste Stream	Date: 3-12-1997
Don Brake (M) Sdn Bhd	Assessment	
A. Waste Generation		
1. Process unit / operation	Brake lining production	on line.
2. Waste stream identifica	ation <u>Cutting, Grinding, Dr</u>	illing, Chamfering.
3. Waste leaves the proces	ss as	
() Air emission	() Wastewa	ter
(✓) Solid waste	() Hazardou	us waste
4. Is the waste mixed with	n other waste? () Yes	(✔) No
(If the answers is yes, f	ill out a sheet for each of the in	ndividual waste streams)
5. Describe how the waste	e is generated.	
The waste is generated	l during cutting, grinding, drii	lling and chamfering of the
brake lining dust.		
B. Waste Characteristics		
(Attach additional sheets v	with composition data, as nece	essary)
1. Type		
() Gas () Liqui	d (✓) Solid () Mixe	ed () Sludge
2. Generation rate		
Annual : <u>318.</u>	25 metric tonne/year	
Max : <u>31.3</u>	3 metric tonne/month	
Average: 26.5	2 metric tonne/month	

3. Occurrence	() Continuous
	(✓) Discrete
	() Periodic (length of period:)
	() Sporadic/irregular
	() Non-recurrent
4. Physical appea	arance
Light fiber ar	nd fine particles in greyish color.
5. Chemical cor	nponents
Contains of h	neavy metals: Barium, Chromium, Plumbum, Zinc, Copper, Ferum.
	organic : Phenol, Formaldehye.
6. Behavior of	waste in environment. Please comment on how the waste may
behave and	affect the environment once it is released. Discuss which of the
following ap	ply.
Toxicity/Hea	lth Hazard:
Cause lung c	ancer if exposed for long period.
Biodegradab	ility
<u>N/A</u>	
Tendency to	accumulate, persist or magnify in the food chain
<u>N/A</u>	
Synergistic e	ffect
N/A	
Overall envi	ronmental risk
Contains of t	oxic heavy metals and organics, may contaminate ground
water if not p	properly disposed.

C. Waste Management

-1	Ann	licah	e reon	lations

Environmental Quality (Schedul	ed Wastes) Regulations, 1989; First Schedule
(Regulation 2), Part 1 Section 2	0 and Part 2 Section 16.
2. Disposal frequency	
Collection of brake lining dust	was carried out twice a month.
3. Describe how the waste leaves the	he site
The brake lining dust are packed	d in plastic bag and then put into metal drum.
4. Recycling	
Is the waste recycled?	() Yes (✓) No
If "Yes", please describe the rec	ycling process (e.g. re-use, energy recovery, etc)
There is potential for recycling.	Further investigation needs to be carried out.
Is any reclaimed material return	to the site?
() Yes (✓) No	() Used by others
Residue yield	
Residue disposal <i>N/A</i>	
5. Waste treatment:	
() Biological	() Precipitation
() Oxidation/Reduction	() Solidification
() Incineration	() Evaporation
() Neutralization	(✓) Other (please describe)

o. I mai	Time rate receptor and mean or aspection					
() Landfill	() River or ocean			
() Pond	() Atmosphere			
() Lagoon	() Sewer			
() Deep well	(✓) Other (please describe) (Storage in metal drum)			

6. Final waste recentor and mode of denosition

7. Over-all cost:

Cost Element	Unit Price (RM)
Plastic bag	1.50/bag
Metal drum	15/drum
Transportation fee	67/metric tonne
Disposal fee	495/metric tonne

Appendix 2

Dust Ratios	Leachability Indices					
	Ba	Cr	Zn	Pb	Cu	Fe
Cement:Dust						
(60:40)	7.6 ± 0.0	9.3 ± 0.3	8.4 ± 0.1	8.7 ± 0.1	9.1 ± 0.1	9.0 ± 0.1
(50:50)	7.7 ± 0.1	9.1 ± 0.3	8.3 ± 0.1	8.6 ± 0.1	9.0 ± 0.1	8.9 ± 0.1
(40:60)	7.9 ± 0.0	8.9 ± 0.3	8.2 ± 0.2	8.4 ± 0.1	9.1 ± 0.4	8.7 ± 0.1
(30:70)	8.0 ± 0.0	8.7 ± 0.2	8.1 ± 0.2	8.3 ± 0.1	8.8 ± 0.1	8.6 ± 0.1
AC:Cement:Dust						
(4:56:40)	8.3 ± 0.1	9.6 ± 0.2	9.0 ± 0.1	9.2 ± 0.2	9.6 ± 0.1	9.4 ± 0.1
(5:45:50)	8.5 ± 0.2	9.3 ± 0.1	8.9 ± 0.2	9.0 ± 0.1	9.4 ± 0.1	9.4 ± 0.1
(6:34:60)	8.7 ± 0.1	9.1 ± 0.1	8.7 ± 0.1	8.9 ± 0.1	9.3 ± 0.1	9.2 ± 0.1
(7:23:70)	8.8 ± 0.1	8.9 ± 0.1	8.7 ± 0.1	8.7 ± 0.1	9.1 ± 0.1	9.1 ± 0.1
Polymal:Dust						
60:40 (3%)	10.0 ± 0.6	_a	9.6 ± 0.5	9.5 ± 0.1		-
60:40 (5%)	10.0 ± 0.5	-	9.0 ± 0.3 9.7 ± 0.3	9.9 ± 0.2		
50:50 (3%)	9.5 ± 0.4	-	9.4 ± 0.4	9.5 ± 0.2	-	-
50:50 (5%)	9.5 ± 0.4	-	9.4 ± 0.4	9.5 ± 0.1		-
45:55 (5%)	9.2 ± 0.3	-	9.1 ± 0.4	9.2 ± 0.1	-	-
Hetron:Dust						
60:40 (3%)	9.7 ± 0.5	-	9.6 ± 0.4	9.8 ± 0.2	-	-
60:40 (5%)	9.7 ± 0.4	-	9.6 ± 0.3	9.8 ± 0.1	-	-
50:50 (3%)	9.5 ± 0.4	-	9.3 ± 0.3	9.4 ± 0.1	-	-
50:50 (5%)	9.4 ± 0.4	-	9.2 ± 0.3	9.4 ± 0.1	-	-
45:55 (5%)	9.2 ± 0.4	-	9.0 ± 0.2	9.0 ± 0.1	-	-

a mean ± standard deviation

b The trace metals were not detected in the leachate