8. Conclusion .

As mentioned in the introduction chapter, one of the goals of this project was to
create a reusable framework that can support transparent persistence. This goal has has been
achieved with the reflection features of Java, with the user able to save and restore objects

without having to pre-process or post-process the class definitions first. Object-to-relational
mapping as well as the inverse mapping has also been implemented successfully. This
chapter summarizes and evaluates the work done, and outlines directions for future work.

8.1 Strengths of the Persistence Framework

The following primary features of the fi rk arc idered ial in
performing its function effectively:

* Transparency — This is an advantage because it means the framework is
domain-independent and can be used to save and restore objects in any

application, whether in the medical, fz ing, or tel
ficlds.

® Reusability - In the event that the k needs to be customized to
suit a lar domain or p h this can be done easily
by extending the existing classes.

* Querying - This enables the user to retricve objects based on criteria on its
attributes. In a real world application, this function is very frequently used
and is essential for cffective object pcrsmcncc In addition, partial retrieval
of the object graph is supported, imp g per when only certain
data need to be retrieved.

o Updating — This allows updating of selected attributes in the object graph
in the database. Thercfore, parts of objects can be modified and saved
without having to save the whole object graph again.

¢ Transactions and locking — In a multi-user environment, this is essential
to prevent conflicts and inconsistencies in the database.
o Portability — As the framework is written completely in Java, it can be
supported on virtually any system that has a Java implementation.
.

62

8.2 Limitations of the Persistence Framework

The framework is not suitable for every possible application, due to the limi

of certain implemented functions as follows:

¢ Only supports simple queries = The framework does not allow nested
queries, joins on different object graphs, and execution of stored
procedures. This is required in large systems optimized for a certain
domain. Without it, the framework is only suited for use in small and
medium sized systems.

* Does not support all Java classes — The framework might encounter
problems when trying to save system-specific Java classes. Thus it is not
recommended for use in system level applications as it has not been tested
fully in this area.

® Security ~ Since the framework can access the private and protected
attributes of the user’s objects, this can pose a great security risk especially
if the object contains sensitive data such as passwords or encryption keys.

Therefore it cannot be used in high-security cnvironments.
8.3 Comparison with other Persistence Frameworks

In comparison, the transparent object persistence offered by this framework is a

key feature most i fi ks fail to impl Java Blend by Sun
Microsystems, CocoBase by Thought Inc., Odapter by Hewlett-Packard, and Secant
Extreme POS by Secant Technologics all impl object persi but they require

the user to cither pre-process the classes, or declare the class structure in a proprictary
language. Even fully object-oriented databases such as Object Design’s ObjectStore does
not support transparent object persistence. One product that docs support transparent
persistence is Java Object Persistence (JOP) 0.4a by David Rothwell, but it utilizes native
methods and as such, is not portable across platforms.

In terms of querying, Secant Extreme POS has a more powerful query language,
than the framework developed in this project. Secant’s querying allow for sorting,

63

grouping, multiple object graph joins, and stored dures. The other fr ks cither

support simple querics or none at all.

As the other i fi k ducts are based on a
design, it is relatively easy for them to implement proxy objects where attributes are
fetched only when the application accesses them. This is also referred to as late fetching
and can improve performance especially when dealing with large object graphs. As proxy
objects cannot be implemented in Java without compromising transparency, the persi
framework in this project allows for selective retrieval of attributes in the querying. This
allows the user to retrieve portions of an object graph only when it is needed.

8.4 Future Work

In terms of perf the fr k can be improved greatly on this aspect. As

the framework has to support various p

of differing capabilities, it
has to follow the lowest common denominator and not depend on performance-cnhancing
features offered by the mechanism such as user-defined types, arrays, stored procedures, or
binary large objects. One solution would be to have the persistence broker recognize
mechanisms that support certain features and execute methods that take advantage of this.
On the other hand, if the broker is specialised too extensively for each kind of persistence
mechanism, it would increase the coupling between the broker and the mechanism, and

this would lead to difficultics when modifications need to be made.

As mentioned in Section 8.2, the framework can pose a great security risk when
used with itive data. A malicious program can querade as the i broker
and obtain access to the object’s data. This can be solved by using the features in the
java.security package, which implements a security manager and various run-time security
measures. Otherwise, the user can encrypt any sensitive data in objects that are passed to
the framework.

More user control over the persistence process can also be added as currently the
framework saves the entire object including all referenced objects. For large objects this
will incur a large storage and performance overhead. Moreover, not all attributes in an «

object need to be persisted as objects are bound to contain transient variables. The user
might want to choose which attributes to save, perhaps by passing an attribute list to the
k or by impl ing its own i methods. The solution now is just to sct

the reference to null when passing the object to be saved.

65

