Software Architecture
in
Project Management

Looi Kum Yeng
WGA 00035

Supervised by
Associate Professor Dr. P. Sellappan
Faculty Computer Science and Information Technology
University of Malaya

This dissertation is submitted to
Faculty of Computer Science and Information Technology
University of Malaya
in partial fulfillment of requirement for
Degree of Master of Computer Science (Software Engineering)
Session 2000/2001
Declaration

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institute of tertiary education. Information derived from the published and unpublished work of others has been acknowledged in the text and a list of references is given.

Looi Kum Yeng

May 2001
ACKNOWLEDGEMENT

The research development of Software Architecture in Project Management is carried out through the advice, assistance and contributions of many individuals. First and foremost, I would like to extend my utmost gratitude to Associate Professor Dr. P. Sellappan, my project supervisor who has provided me with unlimited support and guidance throughout the whole research.

Special thanks to Ms. Sri Devi, Ms. Azniza and other fellow course mates for sharing their knowledge throughout the duration of the project. Thank you for all the lecturers who had given their feedback and suggestions during the presentation of this research paper.

Special thanks also go to the system administrator and lab assistance, especially to Mrs. Koh Swe Neo (Postgraduate lab assistance) and Mr. Sim Kian Hwa (Micro Lab 1 and 2 assistance) for taking their time to provide valuable lab facilities.

Finally, I want to thank my Lord Jesus Christ for providing an opportunity to complete this project within the given period. With His strength and grace, I am able to endure the difficulties in producing this piece of work. Special thanks to my family members for their daily reminders, support and understanding for the past few months.

Looi Kum Yeng
WGA 00035
26/5/2001
ABSTRACT

Software architecture is vital for large and complex software systems in which the main means is controlling complexity. Currently, software development has been deteriorating from architecture point of view over the years as a result of adaptation of vast changing of system requirements. Consequently, architecture improvement of existing software is therefore turning more and more important.

Software architecture is a set of concepts and design decisions about the structure and texture of software that must be made prior to concurrent engineering to enable effective satisfaction of architecturally significant explicit functional and quality requirements and implicit requirements of the product family, the problem, and the solution domains. It provides a cohesive view to guide further design and development. Besides, it guides the wiring up of interacting modules on distributed system, analyze the behaviour and attributes of system prior to system development.

This research paper explains the utilization of software architecture in assisting the planning of resources in project management where constantly improving the overall quality and performance of software development. Architectural design provides a better picture of structure of structures of a system in a higher level of abstraction which in turn enhance the efficiency and effectiveness of recognizing risks and constraints, hence lowering down the cost and maximizing the resources utilization.

Besides, the research paper also describes the design of strategy for cost estimation, risk analysis and resource evaluation in project management. The strategy will give an in-depth knowledge in allowing project manager full control in resource planning and
estimation. As a result, software architecture revolutionizes the working pattern and culture of a project manager.
Contents

ACKNOWLEDGEMENT .. I

ABSTRACT .. II

CONTENTS .. IV

LIST OF FIGURES ... VIII

LIST OF TABLES .. X

LIST OF ABBREVIATIONS .. XI

CHAPTER 1 INTRODUCTION ... 2

1.1 PROBLEM DOMAIN .. 2

1.2 PROBLEMATIC ISSUE IN DEFINITION .. 3

1.3 OBJECTIVES ... 5

1.4 CONTENTS OF REPORT .. 6

CHAPTER 2 LITERATURE REVIEW ... 9

2.1 SOFTWARE ARCHITECTURE .. 9

2.1.1 Definitions ... 10

2.1.2 Traditional Software Development .. 12

2.1.3 Applying Software Architecture in Context .. 14

2.1.3.1 Architecture is The Vehicle for Stakeholder Communication .. 15

2.1.3.2 Architecture Manifests the Earliest Set of Design Decisions .. 16

2.1.3.3 Architecture as A Transferable, Reusable Model .. 18

2.1.4 Different Views in Software Architecture .. 19

2.1.5 Architectural Design .. 21

2.1.6 Architectural Structural ... 22
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.7</td>
<td>Processes towards an Architecture</td>
<td>24</td>
</tr>
<tr>
<td>2.1.8</td>
<td>Architecture-Based Process Steps</td>
<td>25</td>
</tr>
<tr>
<td>2.1.9</td>
<td>Architectural Styles</td>
<td>28</td>
</tr>
<tr>
<td>2.1.9.1</td>
<td>Data-Centered Architectures</td>
<td>29</td>
</tr>
<tr>
<td>2.1.9.2</td>
<td>Data-Flow Architectures</td>
<td>30</td>
</tr>
<tr>
<td>2.1.9.3</td>
<td>Virtual Machine Architectures</td>
<td>32</td>
</tr>
<tr>
<td>2.1.9.4</td>
<td>Call-And-Return Architectures</td>
<td>33</td>
</tr>
<tr>
<td>2.2</td>
<td>RELATION PARTITION ALGEBRA (RPA)</td>
<td>35</td>
</tr>
<tr>
<td>2.3</td>
<td>PROJECT MANAGEMENT</td>
<td>37</td>
</tr>
<tr>
<td>2.3.1</td>
<td>An Integrative Approach</td>
<td>39</td>
</tr>
<tr>
<td>2.3.1.1</td>
<td>Strategic Plan</td>
<td>39</td>
</tr>
<tr>
<td>2.3.1.2</td>
<td>Process of Managing Actual Projects</td>
<td>40</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Project Life Cycle</td>
<td>42</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Integration of Strategic Management in Project Management</td>
<td>43</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Handling Large and Complex Projects</td>
<td>44</td>
</tr>
<tr>
<td>2.3.4.1</td>
<td>Functional Decomposition</td>
<td>45</td>
</tr>
<tr>
<td>2.3.4.2</td>
<td>Design Decomposition</td>
<td>45</td>
</tr>
<tr>
<td>2.3.4.3</td>
<td>Project Decomposition</td>
<td>45</td>
</tr>
<tr>
<td>2.4</td>
<td>RISK MANAGEMENT</td>
<td>47</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Definition of Risk</td>
<td>47</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Risk Management Methodology</td>
<td>48</td>
</tr>
<tr>
<td>2.4.2.1</td>
<td>Risk Quantification</td>
<td>49</td>
</tr>
<tr>
<td>2.5</td>
<td>COST ESTIMATION</td>
<td>50</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Cost Estimating Method</td>
<td>50</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Pricing for Cost Estimation</td>
<td>51</td>
</tr>
<tr>
<td>2.5.2.1</td>
<td>Systems Pricing</td>
<td>52</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Life-Cycle Costing (LCC)</td>
<td>53</td>
</tr>
</tbody>
</table>

CHAPTER 3 ARCHITECTURAL ANALYSIS | 56
List of Figures

FIGURE 2-1 PRIMARY SOFTWARE ARCHITECTURE CONCEPT .. 14
FIGURE 2-2 THE FOUR VIEWS OF SOFTWARE ARCHITECTURE .. 19
FIGURE 2-3 RELATIONSHIP AMONG REFERENCE MODEL, ARCHITECTURAL STYLE AND REFERENCE MODEL THAT IMPLEMENTED TO SOFTWARE ARCHITECTURE .. 25
FIGURE 2-4 ARCHITECTURAL STYLES, ORGANISED BY IS-A RELATIONS 29
FIGURE 2-5 DATA-CENTERED ARCHITECTURE .. 30
FIGURE 2-6 DATA-FLOW ARCHITECTURES .. 32
FIGURE 2-7 VIRTUAL MACHINE STYLE .. 33
FIGURE 2-8 LAYERED ARCHITECTURE .. 34
FIGURE 2-9 PART-OF AND USAGE RELATIONS .. 36
FIGURE 2-10 OVERVIEW OF PROJECT MANAGEMENT .. 38
FIGURE 2-11 INTEGRATED MANAGEMENT OF PROJECTS ... 41
FIGURE 2-12 PROJECT LIFE CYCLE ... 43
FIGURE 2-13 PROJECT LIFE CYCLE RISK ANALYSIS ... 48
FIGURE 2-14 SYSTEM APPROACH TO RESOURCE CONTROL ... 53
FIGURE 3-1 ELICITING THE ARCHITECTURAL REQUIREMENTS 58
FIGURE 3-2 CONCEPTUAL ARCHITECTURE VIEW .. 60
FIGURE 3-3 SOFTWARE ARCHITECTURE QUALITY ASSESSMENT 64
FIGURE 3-4 ANALYSIS AND DESIGN SOFTWARE ARCHITECTURE FLOW 67
FIGURE 3-5 STEPS IN SOFTWARE ARCHITECTURE ANALYSIS METHOD 71
FIGURE 3-6 STEPS IN SIMULATION-BASED ASSESSMENT .. 75
FIGURE 4-1 EVOLUTIONARY PRODUCT DEVELOPMENT FROM SOFTWARE ARCHITECTURE DESIGN ... 81
FIGURE 4-2 SOFTWARE ARCHITECTURE DESIGN METHOD ... 83
FIGURE 4-3 SOFTWARE COMPONENTS ... 89
FIGURE 4-4 SOFTWARE CONNECTIONS .. 90
FIGURE 4-5 HARDWARE COMPONENTS ... 90
List of Tables

TABLE 4-1 ARCHITECTURAL CONSTRUCT ... 87
TABLE 4-2 CONCEPTUAL ARCHITECTURE VIEW .. 93
TABLE 4-3 MODULE ARCHITECTURE VIEW .. 95
TABLE 4-4 EXECUTION ARCHITECTURE VIEW ... 98
TABLE 4-5 CODE ARCHITECTURE VIEW ... 100
TABLE 4-6 PROJECT MANAGEMENT ARCHITECTURE VIEW 105
TABLE 5-1 USEFUL INFORMATION FROM ARCHITECTURAL DESIGN PERSPECTIVE 113
TABLE 6-1 ROLES OF SOFTWARE ARCHITECT AND PROJECT MANAGER 135
List of Abbreviations

AAPM Architectural-Assisted Project Management
ABC Architecture Business Cycle
ADL Architecture Definition Language
COM Common Object Module
CORBA Common Object Request Broker Architecture
CPM Critical Path Method
GUI Graphic User Interface
HTML Hypertext Markup Language
IEEE Institute of Electrical and Electronic Engineers
LCC Life-Cycle Costing
PERT Program Evaluation and Review Technique
QA Quality Attribute
RPA Relation Partition Algebra
SAAM Software Architecture Analysis Method
SOW Statement of Work
UML Unified Modeling Language
VB Visual Basic
WBS Work Breakdown Structure
XML eXtensible Markup Language