APPENDIX

ERROR ANALYSIS

In a general relationship, the error of a quantity such as \(Z \) can be derived as the following. Let \(z \), \(a \), \(b \) and \(c \) be numerical values of the physical quantities \(Z \), \(A \), \(B \) and \(C \) and \(k \) being a constant.

\[
Z = k \times A^n \times B^m \times C^p \\
z = k \times a^n \times b^m \times c^p
\]

Taking logarithms to base e;

\[
\ln (z) = \ln (k) + \ln (a^n) + \ln (b^m) + \ln (c^p) \\
\ln z = \ln k + n \ln a + m \ln b + p \ln c
\]

Differentiating,

\[
\frac{1}{z} \delta z = n(1/a) \delta a + m(1/b) \delta b + p(1/c) \delta c
\]

Thus,

\[
\text{% error in } Z = n(\text{% error in } A) + m(\text{% error in } B) + p(\text{% error in } C)
\]

A1 : Refractive index (\(n \))

The refractive index of thin films on transparent substrate was given in equation 3.2.

\[
n(\lambda) = \left[N + (N^2 - n_o^2 n_l^2)^{1/2} \right]^{1/2}
\]

with \(N = (n_o^2 + n_l^2)/2 + 2 n_o n_l [\big(T_M - T_m \big) / T_M T_m] \)
n is a function of T_M and T_m. Thus the maximum possible error in T_M and T_m is

$$\left[\frac{\Delta T_{\text{max}}}{T_{\text{max}}} \right] = \left[\frac{\Delta T_{\text{min}}}{T_{\text{min}}} \right] = 0.01$$

$$\left[\frac{\Delta N(\lambda)}{N(\lambda)} \right]^2 = \left[\frac{(\Delta T_{\text{max}} + T_{\text{min}})}{T_{\text{max}}} \right]^2 + \left[\frac{\Delta T_{\text{max}}}{T_{\text{max}}} \right]^2 + \left[\frac{\Delta T_{\text{min}}}{T_{\text{min}}} \right]^2$$

$$= 1 \times 10^{-4}$$

$$\left[\frac{\Delta n(\lambda)}{n(\lambda)} \right]^2 = \left[\frac{\Delta N(\lambda)}{N(\lambda)} \right]^2$$

$$= 1 \times 10^{-4}$$

$$\left[\frac{\Delta n(\lambda)}{n(\lambda)} \right] = 0.01$$

A2: Film thickness (d)

$$d = \frac{m\lambda}{2n}$$

Therefore

$$(\Delta d/d) = (\Delta n/n)^2$$

$$= 0.01$$

A3: Optical energy gap (E_g)

The optical energy gap was deduced from the intercept at the energy axis of the Tauc’s plot. Therefore $E_g = C/m$ where C is the intercept on the y-axis and m is the gradient of its linear portion.

$$\left[\frac{\Delta E_g/E_g}{E_g} \right]^2 = \left[\frac{\Delta C}{C} \right]^2 + \left[\frac{\Delta m}{m} \right]^2$$

From the least square method,

$$\left[\frac{\Delta C}{C} \right] = 0.002$$

$$\left[\frac{\Delta m}{m} \right] = 0.01$$

Therefore,

$$\left[\frac{\Delta E_g/E_g}{E_g} \right] = 0.01$$
A4 : Integrated intensity (I)

\[I = S/\omega_o \]
\[[\Delta I/I]^2 = [\Delta S/S]^2 \]

Thus,
\[[\Delta I/I] = [\Delta S/S] \]
\[= 0.05 \]

A5 : Hydrogen content (H%)

From equation 3.13,
\[H\% = \frac{N(H)}{N_{Si}} = \frac{N(H)}{(5 \times 10^{22})} \]

Therefore,
\[[\Delta H\% / H\%] = [\Delta N/N] \]
\[= 0.05 \]

A6 : Microstructure parameter (R)

From equation 3.12,
\[R = \left[\frac{l_{2100}}{(l_{2100} + l_{2000})} \right] \]
\[[\Delta R/R]^2 = \left[\frac{\Delta l_{2100}}{l_{2100}} \right]^2 + \left[2(\Delta l_{2100} + \Delta l_{2000})/(l_{2100} + l_{2000}) \right]^2 \]
\[[\Delta R/R]^2 \equiv \left[\Delta l_{2100}/l_{2100} \right]^2 \]

Thus \[[\Delta R/R] = 0.05 \]
Appendix

A7: Urbach tail bandwidth \((E_e)\)

The Urbach tail bandwidth is deduced from the slope of the linear part of plot \(\ln \alpha\) versus \(E\) near the absorption edge. Thus \(E_e = 1/m\) where \(m\) is the slope.

Therefore, \((\Delta E_e/E_e) = (\Delta m/m)\)

From least square root method,

\((\Delta m/m) = 0.01\)

Thus, \((\Delta E_e/E_e) = 0.01\)