REFERENCES


Metabolism and Disposition 5(1): 1-8


Celerand, M. and Forlin, L. (1995). Decreased responsiveness of the hepatic cytochrome P450IA1 system in rainbow trout (Oncorhynchus mykiss) after prolonged exposure to PCB. Aquatic Toxicology 33: 141-153.


niloticus) and Mudfish (Clarias anguillaris). Comp. Biochem. Physiol. 114C(3): 210-211


Habig, C.; Di Giulio, R. T.; Nomeir, A. N. and Abou-Donia M. B. (1986). Comparative toxicity, cholinergic effects and tissue levels of S, S, S-tri-n-butyl phosphorothioate (DEF) to channel catfish (*Ictalurus punctatus*) and blue crabs (*Callinectes sapidus*). *Aquatic Toxicology* 9: 193-206


Le Bris, H.; Maffart, P.; Bocquene, G.; Buchet, V.; Galgani, F. and Blanc, G. (1995). Laboratory study on the effect of dichlorvos in two commercial bivalves. *Aquaculture*
138(1-4): 139-144.


Lockhart, W. L.; Metner, D. A. and Grift, N. (1973). Biochemical and residue studies of rainbow trout (Salmo gairdneri) following field and laboratory exposures to fenitrothion. The Manitoba Entomologist 7: 26-36


Murphy, D. L. and Gooch, J. W. (1997). EROD and CYP1A protein in channel catfish (Ictalurus punctatus) from an urban estuary relative to that in benzo(a)pyrene-exposed hatchery specimens. Environmental Pollution 95(2): 235-239


Weiss, C. M. (1959). Response of fish to sub-lethal exposures of organic phosphorus...


purified isozymes of cytochrome P-450 from β-naphthoflavone-fed rainbow trout. *Biochemical Pharmacology* 33(23): 3743-3753


Their impact on wildlife and the environment. P. Mineau (Ed.), pp 234-243