ANTIGENIC EPITOPE ANALYSIS OF THE p101 NUCLEOCAPSID PROTEIN OF HUMAN HERPES VIRUS 6 (VAR. B)

by

KATHERINE ANNE FRANCIS
B. Sc. (Hons.)

A DISSERTATION SUBMITTED TO THE INSTITUTE OF POSTGRADUATE STUDIES AND RESEARCH IN FULFILMENT FOR THE DEGREE OF MASTER OF PHILOSOPHY

FEBRUARY 2000

INSTITUTE OF POSTGRADUATE STUDIES AND RESEARCH
UNIVERSITY OF MALAYA
KUALA LUMPUR
MALAYSIA
Abstract

Human herpes virus 6 (HHV6) is an ubiquitous, lymphoproliferative β-herpesvirus, which infects almost all individuals during infancy and persists lifelong. Two variants of HHV6 (A and B) have been described. The present study is on HHV6B, which causes exanthem subitum, also known as roseola infantum, a common febrile childhood illness.

Two methods of detection for anti-HHV6B in body fluids were used, being indirect immunofluorescence assay (IFA) and peptidylated pin-ELISA. For IFA, the target cells were HHV6B-infected human cord blood mononuclear cells (HCBMC). Ninety eight infant sera were tested by IFA and all were found to be IgG-HHV6 positive. Seventeen breast milk samples were also analyzed and 9 were IgA-HHV6 positive against HHV6-infected HCBMC. Eight saliva samples tested were all IgA-HHV6 negative in IFA. Serum, breast milk and saliva samples were collected from different individuals. No two sample was from the same individual.

Anti-HHV6 IFA was carried out on 10 cord blood samples and all were found IgG positive but IgA negative, thus eliminating the possibility that IgA is transferred through cord blood. Age prevalence study was carried out on 240 subjects between 0-20 years old. Distinctly different serum IgA and IgG profiles were obtained. However, a correlation study carried out showed that there is correlation between prevalence of IgG and IgA. For the IgG anti-HHV6, the proportion with antibody was high at birth, about 80% and the antibody levels remained high till about 2 years. It then decreases slowly and increases again before reaching a plateau at adulthood. As for HHV6 anti-IgA
antibodies were low during childhood till about 4 years of age and then increased gradually. However, the increase did not follow a consistent pattern with age.

For the peptidylated pin-ELISA, HHV6 peptides were synthesized onto polyethylene pins and served as target antigens in ELISA. A 101kDa (p101) protein of the HHV6 variant B strain Z29 (858 amino acids) has been found to be highly immunoreactive (Pellet et al, 1993). In the present study, 334 amino acids of the carboxyl terminal was synthesized as a set of 46, 14 mer peptides, overlapping by 7-mers, since antigenicity of a protein is frequently localized at the carboxyl terminal (Neipel et al, 1992). The sequence selected was also based on antigenic predictions using hydrophilicity based on Hopp and Woods (1982), accessibility and secondary structure based on the NN_PREDICT method. All three methods were obtained through Protscale Analysis from SWISSPROT (http://expasy.hcuge.ch/cgi-bin/protscale.pl.)

The antigenic profiles for IgG for 25 HHV6 IFA positive sera to HHV6 peptides were studied and 6 regions were identified. Of the 6, peptide 44 (IRQDGETDEETVP) showed the highest reactivity, recognized by IgG in 24 of the 25 sera tested. A percentage reactivity of 96% was obtained.

In the saliva samples tested, 3 samples were IgA positive when reacted with 5 major HHV6 peptides. The reason for the HHV6 IFA-negative saliva showing reactivity in ELISA may be because the peptide regions recognized by salivary IgA were not exposed in the virus-infected HCBMC. This may be due to the conformational structure of the protein. When synthesized the protein structure is linearized and thus may have been possible to recognized. But as a whole antigen in IFA, it exists in its native conformation and could not be detected.
Six of the HHV6 IFA-positive and 3 HHV6 IFA-negative breast milk samples were tested against the HHV6 peptides. The IFA-positive and IFA-negative both reacted with the similar HHV6 peptides in ELISA for IgA, except for peptide 13 (KGNSRDLYSGGNAE). This peptide was predominantly recognized by IgA in HHV6 IFA-positive breast milk. This suggests the presence of a shared IgA antigenic epitope of IgA expressed in both the virally-infected HCBMC and the HHV6 peptide. Since serum IgG but not IgA to HHV6 was detected by IFA in cord blood, the presence of IgA anti-HHV6 in breast milk may serve to provide another means of passive immunity besides the transplacental IgG.

The HHV6 antigenic regions from the ELISA studies were also analyzed for their predicted hydrophilicity, accessibility and secondary structure by methods from Protoscale, Swissprot. Besides these prediction methods, mobility as well as coil structured parameters were used to confirm our findings. The major immunodominant regions for IgG and IgA, being peptides 44 and peptide 13 respectively were found to be hydrophilic as well as surface accessible. They were also highly mobile and showed to be made up of coiled structures. The secondary structure of both these peptides were made up of mostly coiled structures. Peptide 44 had a helix-coil-helix structure and peptide 13 was a coil-helix-coil structure. As coils frequently exist as protrusions from the main body, they are preferentially recognized by antibodies.
Abstrak

Human herpes virus 6 merupakan beta-herpesvirus yang menginfeksi kebanyakan individu semasa dalam peringkat bayi dan kekal seumur hidup. Terdapat dua varian HHV6 iaitu A dan B. Kajian ini adalah mengenai HHV6B yang menyebabkan exanthem subitum, yang juga dikenali sebagai roseola infantum.

Dua cara pengesanan anti-HHV6B dalam secair badan telah digunakan, iaitu kaedah immunopendafluoran dan pin-ELISA peptida. Bagi kaedah immunopendafluoran, sel sasaran adalah sel mononuklear darah tali pusat (HCBMC). 98 sera bayi telah dikaji dengan kaedah ini dan didapati kesemuaanya mempunyai antibodi IgG terhadap HHV6B. Daripada 17 sampel susu ibu yang dikaji, 9 daripadanya adalah positif bagi antibodi IgA terhadap HHV6B. Lapan sampel air liur dikaji dan didapati tiada yang mempunyai antibodi IgA terhadap HHV6B. Kesemua sampel didapati dari individu berlainan.

Sepuluh sampel darah tali pusat telah dikaji dan kesemuaanya didapati mempunyai antibodi IgG tetapi antibodi IgA tidak dapat dikesan. Ini menolak jangkaan bahawa IgA dipindah melalui tali pusat. Apabila kajian seroprevalen mengikut umur dijalankan ke atas 240 sampel berumur 0-20 tahun, profil IgA dan IgG yang berlainan diperolehi. Tetapi kiraan korelasi menunjukkan bahawa kedua-dua IgA dan IgG mempunyai korelasi antara mereka. Bagi antibodi IgG, takat yang tinggi diperolehi bagi subjek berumur 0-1 tahun, iaitu 80%, menunjukkan adanya antibodi ibu yang dipindahkan kepada bayi. Takat ini kekal ke umur 2 tahun dan seterusnya menurun ke takat 55% sebelum meningkat ke takat dewasa. Takat antibodi IgA terhadap HHV6B adalah rendah pada masa baru lahir hingga ke 4 tahun dan seterusnya meningkat ke takat dewasa. Walau bagaimanapun...

v
peningkatan ini tidaklah berkadar dengan umur. Takat antibodi IgA adalah rendah secara relatif berbanding antibodi IgG.

Dalam sampel air liur yang dikaji, 3 didapati IgA positif dan bertindakbalas dengan 5 peptida utama HHV6B. sampel air liur didapati negatif dalam immunopendafluoran tetapi kesan positif bila ditindakkan dengan peptida. Ini mungkin segmen peptida yang di kenali oleh IgA semasa ELISA peptida tidak berada di permukan sel yang diinfeksi. Kemungkinan ini disebabkan struktur konformasi protein. Bila dalam keadaan asal, permukaan protein berada dalam keadaan tersembunyi tetapi bila dilinearkan, dapat dikesan.

Enam daripada sampel susu yang positif terhadap IgG dan 3 negatif terhadap IgA di dalam kaedah immunopendafluoran telah dikaji dengan kaedah pin-ELISA. Kedua-dua set sampel itu telah bertindakbalas dengan segmen peptida yang sama kecuali untuk
peptida 13. Hanya sampel susu yang positif terhadap IgA yang bertindak dengan peptida 13.

Memandangkan hanya antibodi IgG dan bukan IgA yang dikenali dalam darah tali pusat, kehadiran IgA dalam susu ibu mungkin menyumbangkan terhadap imuniti pasif.

Kesimpulannya, kajian ini menunjukkan bahawa kedua-dua peptida 44 dan 13 merupakan segmen antigenik berpotensi.
ACKNOWLEDGEMENTS

I would like to extend my heartfelt thanks and gratitude to my two supervisors Assoc. Prof. Dr. Sam Choon Kook and Prof. Dr. Cheng Hwee Ming for their constant assistance and support. This thesis would never have reached its completion if not because of their encouragement and guidance.

Many thanks also to Dr. Chua Kaw Bing for supplying the HHV6B stock used in the present study. I am particularly indebted to Dr. Kula and his staff of the Maternity Ward, University Hospital for their co-operation in making this study a success.

I am truly grateful also to the staff and students of the NPC lab especially Chandrika, Padmaja, Siew Choo, Uncle Chong, Kien Hui and Shabana for their friendly support and encouragement. This acknowledgement would be incomplete without thanking my dearest friends Shamini, Renu and Vinder for their companionship, encouragement and faith in me.

To the staff of IPSP, especially Cik Zubaidah and the staff of IRPA, a very big thank you. Thank you also to the University of Malaya for the financial assistance received.

Finally, to my most beloved family, I love you and thank you for your love, encouragement and understanding. Without you all, I would never have made it through this project. This thesis is a dedication to them.

Lastly, to the Lord Almighty for His blessings and for watching over me at all times.
TABLE OF CONTENTS

ABSTRACT ii
ABSTRAK v
ACKNOWLEDGEMENT viii
TABLE OF CONTENTS ix
LIST OF ABBREVIATIONS xv
LIST OF TABLES xvii
LIST OF FIGURES xix
LIST OF APPENDIX xxiii

CHAPTER 1 : INTRODUCTION

1.1 General Introduction 1
1.2 Human Herpes Virus 6 (HHV6) 2
 1.2a Morphology and Ultrastructure 3
 1.2b Genetic Characteristics 3
1.3 Human Herpes Virus 6 Variants A and B 5
1.4 Cell Tropism and Growth Properties of HHV6A and HHV6B 8
1.5 Animal Models of HHV6 Infection 10
1.6 Human Herpes Virus 6 Infection 10
 1.6a Primary Infection 11
 1.6b Latent Infection 12
1.7 Major Antigens of Human Herpes Virus 6 14
1.8 Mode of HHV6 Transmission 17
 1.8a Transmission through Sera 20
1.8b Transmission through Saliva
1.8c Transmission through Breast Milk
1.9 Detection of Human Herpes Virus 6 Infections
1.10 Epidemiology of Human Herpes Virus 6
1.11 Human Herpes Virus 6 Associated Diseases
1.12 Protein Analysis and Structure
1.13 Immunogenic Epitope Analysis and Mapping
1.14 Multipin Peptide Synthesis
1.15 Prediction of Antigenicity by Hydropathy, Accessibility and Secondary Structure
1.16 Objectives of Present Study

CHAPTER TWO: MATERIALS AND METHODS

2.1 Materials
2.2 Samples
 2.2a Sera Samples
 2.2b Cord Blood Samples
 2.2c Saliva Samples
 2.2d Breast Milk Samples
2.3 HHV6B Stock
2.4 Materials for Separation, Preparation and Harvesting of Human Cord Blood Mononuclear Cells (HCBMC)
2.4a. Phosphate Buffered Saline (PBS) 48
2.4a. Human Interleukin-2 (IL-2) 48
2.4b. Phytohemaglutinin (PHA) Reagent 49
2.4c RPMI 1640 Cell Culture Medium 49
2.4d The RPMI 1640 Growth Medium 49
2.4e RPMI 1640 Maintenance Medium 50

2.5 Methods for Separation, Preparation and Harvesting of Human Cord Blood Mononuclear Cells (HCBMC) 50
2.5a Lymphocyte Separation 50
2.5b Infection with HHV6 50
2.5c Cell Harvesting and Preparation of Slides 51
2.5d HHV6 Negative Control Slides 51

2.6 Indirect Immunofluorescence Assay (IFA) for Detection of IgG and IgA Antibodies against HHV6 Antigens 52

2.7 Electron Microscope Observation of HHV6 Virus in HCBMC 52

2.8 Peptide Synthesis of the p101 Nucleocapsid Protein of HHV6 Using the Multipin Peptide Synthesis Method 53
2.8a Chemistry of Peptide Synthesis 53
2.8b Selection of Synthesis Regions and Generation of the Synthesis Schedule 55
2.8c Pre-synthesis Preparation 55
2.8d Weighing Amino Acids and Activating Chemicals 56
2.8e N,N-Dimethylformamide (DMF) Filtration 56
2.8f Deprotection of Pins 58
2.8g Amino Acid Couplings 58
2.8h Washing of Pins 59
2.8i Acetylation of Terminal Amino Groups 59
2.8j Side-chain Deprotection 60

2.9 Enzyme-Linked Immunosorbent Assay (ELISA) on Samples against The p101 Synthesized Peptides 62

CHAPTER THREE: RESULTS

3.1 HHV6 Cell Culture 68
 3.1a Light Microscopy 68
 3.1b Electron Microscopy 68

3.2 Detection of HHV6 IgA Antibody Prevalence in Age Groups Between 0–20 Years by IFA. 72
 3.2a Detection of Specific Serum IgG 72
 3.2b Detection of Specific Serum IgA 72

3.3 Immunofluorescence Assay for Detection of Antibodies against HHV6 Antigens 76
 3.3a Serum IgA 76
 3.3b Serum IgG 76

3.4 Linear Epitope Mapping of p101 Nucleocapsid Protein of HHV6 79
 3.4a Epitope Mapping of the HHV6 p101 Carboxyl Terminal Protein 79
 3.4b Conjugate Scanning 80
 3.4c IgG Epitopes of HHV6 p101 Carboxyl Terminal Protein in Serum 82
 3.4c (i) HHV6 IFA-positive Sera 82
 3.4c (ii) HHV6 IFA-negative Sera 85
 3.4c (iii) Comparison of IgG Epitopes in HHV6 IFA-positive and HHV6- negative Sera 88
3.4d (i) HHV6 IFA-positive Breast Milk
3.4d (ii) HHV6 IFA- negative Breast Milk
3.4d (iii) Comparison of IgA Epitopes in HHV6 IFA-positive and HHV6- negative Breast Milk
3.4e Salivary IgA Epitopes of HHV6 p101 Carboxyl Terminal Protein
3.4f Cord Blood IgG Epitopes of HHV6 p101 Carboxyl Terminal Protein
3.5 Comparison Studies Between IgG-Serum, IgA-Saliva and IgA-Breast Milk Epitope based on p101 Carboxyl Terminal Peptide Profiles
 3.5a Serum and Breast Milk
3.6 Hydropathy Plots, Surface Accessibility and Secondary Structure
 3.6a Hydropathy Plot Studies
 3.6b Surface Accessibility Analysis
 3.6c Secondary Structure Studies

CHAPTER FOUR: DISCUSSION

4.1 Overview
4.2 Immunofluorescence Assay (IFA) on HHV6 Infected Human Cord Blood Mononuclear Cells (HCBMC)
 4.2a Detection of Specific Antibodies to HHV6 in HCBMC
 4.2a (i) Serum IgG
 4.2a (ii) Salivary IgA
 4.2a (iii) Breast Milk IgA
 4.2b Age Prevalence Study of IgA and IgG Antibody to HHV6
4.3 Peptide Synthesis and Selection of Antigenic Peptides of the HHV6 p101 Carboxyl Terminal Protein
4.3a Antigenic Regions of HHV6 Carboxyl Terminal-recognized by Serum IgG Antibodies 133

4.3b Antigenic Regions of HHV6 Carboxyl Terminal p101 Protein-recognized by Breast Milk IgA Antibodies 136

4.3c Saliva IgA Antibody Reactivity to HHV6 Carboxyl Terminal Peptides 137

4.4 Comparison of HHV6 Epitopes Defined by Serum, Breast Milk and Saliva Antibodies 142

4.4a Potential Use of HHV6 Peptide ELISA for Investigation on HHV6 Infection 145

4.4b IgA HHV6 in Breast Milk 146

4.5 Association of Hydropathy, Surface Accessibility, Secondary Structures and Pepscan Analysis with reference to HHV6 p101 Peptides 147

4.6 Conclusions 153

REFERENCES 155
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACIF</td>
<td>anti-complement immunofluorescence assay</td>
</tr>
<tr>
<td>AIDS</td>
<td>Acquired Immunodeficiency syndrome</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>CPE</td>
<td>cytopathic effect</td>
</tr>
<tr>
<td>CSF</td>
<td>cerebrospinal fluid</td>
</tr>
<tr>
<td>DIC</td>
<td>diisopropylcarboimide</td>
</tr>
<tr>
<td>DMF</td>
<td>dimethylformamide</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>ES</td>
<td>exanthem subitum</td>
</tr>
<tr>
<td>FCS</td>
<td>fetal calf serum</td>
</tr>
<tr>
<td>HCBMC</td>
<td>human cord blood mononuclear cells</td>
</tr>
<tr>
<td>HHV6A</td>
<td>human herpes virus 6A</td>
</tr>
<tr>
<td>HHV6B</td>
<td>human herpes virus 6B</td>
</tr>
<tr>
<td>HBLV</td>
<td>human B-lymphotrophic virus</td>
</tr>
<tr>
<td>hCMV</td>
<td>human cytomegalovirus</td>
</tr>
<tr>
<td>HHV7</td>
<td>human herpes virus 7</td>
</tr>
<tr>
<td>HHV8</td>
<td>human herpes virus 8</td>
</tr>
<tr>
<td>hCG</td>
<td>human chorionic gonadotrophin</td>
</tr>
<tr>
<td>HOBt</td>
<td>1-hydroxybenzodiazone</td>
</tr>
<tr>
<td>IE</td>
<td>immediate early</td>
</tr>
<tr>
<td>IFA</td>
<td>immunofluorescence assay</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>IFN</td>
<td>interferon</td>
</tr>
<tr>
<td>Ig</td>
<td>immunoglobulin</td>
</tr>
<tr>
<td>kDa</td>
<td>kiloDalton</td>
</tr>
<tr>
<td>MCP</td>
<td>major capsid protein</td>
</tr>
<tr>
<td>MS</td>
<td>multiple sclerosis</td>
</tr>
<tr>
<td>nm</td>
<td>nanometer</td>
</tr>
<tr>
<td>OPD</td>
<td>orthophenylenediamine</td>
</tr>
<tr>
<td>PBMC</td>
<td>peripheral blood mononuclear cells</td>
</tr>
<tr>
<td>PBL</td>
<td>peripheral blood lymphocytes</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>rpm</td>
<td>rotation per minute</td>
</tr>
<tr>
<td>TNF</td>
<td>tumour necrosis factor</td>
</tr>
<tr>
<td>IU</td>
<td>international units</td>
</tr>
<tr>
<td>g</td>
<td>grams</td>
</tr>
<tr>
<td>L</td>
<td>litres</td>
</tr>
<tr>
<td>ml</td>
<td>mililitres</td>
</tr>
<tr>
<td>mg</td>
<td>miligrams</td>
</tr>
<tr>
<td>μl</td>
<td>microlitres</td>
</tr>
<tr>
<td>°C</td>
<td>degrees Celcius</td>
</tr>
<tr>
<td>μg</td>
<td>micrograms</td>
</tr>
</tbody>
</table>

xvi
LIST OF TABLES

Table 1.1 : Proteins specific for HHV6 infected cells (from Balachandran et al., 1989). 16

Table 1.2 : Human herpes virus 6 antibody and virus detection methods. 26

Table 1.3 : HHV6 associated diseases. 33

Table 3.1a : IgG HHV6 by Age 70

Table 3.1b : IgA HHV6 by Age. 73

Table 3.2 : Presence of IgG-HHV6 in serum and cord blood samples detected by IFA. 74

Table 3.3 : Presence of IgA-HHV6 in serum, saliva and cord blood samples detected by IFA. 77

Table 3.4 : Major regions of HHV6 p101 peptides reactive with IFA-positive sera. 84

Table 3.5 : Regions of HHV6 p101 peptides reactive with IFA-negative serum samples. 87

Table 3.6 : Major regions of HHV6 p101 peptides reactive with IFA-positive breast milk. 94

Table 3.7 : Major regions of HHV6 p101 peptides reactive with IFA-negative breast milk. 97

Table 3.8 : Immunodominant IgA in saliva to linear epitopes of HHV6 p101 carboxyl terminal protein. 102

Table 3.9 : Hydrophilicity plot: Predicted antigenic regions of HHV6 p101 carboxyl terminal protein and their corresponding hydrophilic amino acid residues and IgG reactivity. 111

Table 3.10 : Hydrophilicity plot: Predicted antigenic regions of HHV6 p101 carboxyl terminal protein and their corresponding hydrophilic amino acid residues and IgA reactivity. 112
Table 3.11: Accessibility plot: Predicted antigenic regions of HHV6 p101 carboxyl terminal protein and their corresponding accessible amino acid residues and IgG reactivity.

Table 3.12: Accessibility plot: Predicted antigenic regions of HHV6 p101 carboxyl terminal protein and their corresponding accessible amino acid residues and IgA reactivity.

Table 3.13: Predicted secondary structures for antigenic regions of HHV6 p101 carboxyl terminal protein identified by IgG epitope analysis in sera.

Table 3.14: Predicted secondary structures for antigenic regions of HHV6 p101 carboxyl terminal protein identified by IgA epitope analysis in breast milk.

Table 3.15: Mobility plot: Predicted antigenic regions of HHV6 p101 carboxyl terminal protein and their corresponding mobile amino acid residues and IgG reactivity.

Table 3.16: Mobility plot: Predicted antigenic regions of HHV6 p101 carboxyl terminal protein and their corresponding mobile amino acid residues and IgA reactivity.

Table 4.1: Detection of HHV6 antigens/antibodies in breast milk.

Table 4.2: Detection of HHV6 antigens/antibodies in saliva.
LIST OF FIGURES

Figure 1.1 : HHV6 virion structure. The 180 to 200nm enveloped virion contains a 100nm nucleocapsid. Prominent tegument lies between nucleocapsid and outer envelope. Double stranded DNA viral genome is spooled around a nucleoprotein central mass within the nucleocapsid (from Leach et al. 1992).

Figure 1.2 : Alignment of the p100 (variant A) and 101K (variant B) amino acid sequences. The lower sequence is the 101K (p101) sequence. Only the nonidentical residues are shown for p100 (upper sequence shown in lowercase).

Figure 1.3 : Schematic representation of the three theoretically possible epitope configurations. The antibody is represented as a rough outline of the Fab fragment. The hatched area indicates the part of the antibody in contact with the amino acids of the epitope. The amino acids are represented by small circles (from Meloen et al., 1991).

Figure 1.4 : The amino acid sequence of overlapping peptides based on a hypothetical 55 amino acid residue protein. The alphabets represent single letter abbreviations for amino acids.

Figure 2.1 : Illustration of salivette (Sarstedt, Germany).

Figure 2.2 : Amino acid sequence of the peptides of HHV6 variant B consisting of 334 amino acids from the carboxyl terminal (amino acids 524-858). The overlapping peptides synthesized is shown in Appendix 2.

Figure 2.3 : The polyethylene pins are arranged in a 8 x 12 configuration corresponding to the wells of a microtitre plate.

Figure 2.4 : Schematic presentation of the steps involved in peptide synthesis.

Figure 2.5 : ELISA plate showing the chromogenic development in wells.
Figure 3.1a: Newly separated cord blood lymphocytes are observed to be single, round and non-granular. (Magnification 200x)

Figure 3.1b: Mature cord blood lymphocytes before infection. Uninfected lymphocytes that form clusters show that the cells are ready for infection. Arrow shows the clumping of cells as observed under the microscope. (Magnification 200x)

Figure 3.2a: HHV6 infected cord blood lymphocytes at day 0. Once the cells are infected, the cluster becomes single again. (Magnification 200x)

Figure 3.2b: HHV6 infected cord blood lymphocytes at day 3 (before harvesting). The arrow shows cytopathic effects (CPE) characterised by large ballooning, refractile cells as observed under the microscope. (Magnification 200x)

Figure 3.3: Electron microscopy of HHV6. The core is observed as dark punctate structures, roughly ring shaped. The nucleocapsid is coated with a distinct tegument (indicated by the arrow as T). An envelope enclosing the tegument can also be observed (labelled as E).

Figure 3.4: Seropositivity profiles of IgA and IgG HHV6 in different age groups.

Figure 3.5a: Negative HHV6 immunofluorescence assay. No immunofluorescence is observed in the cells. (Magnification 200x)

Figure 3.5b: Positive HHV6 immunofluorescence assay. A punctate distribution is observed inside the cells. (Magnification 200x)

Figure 3.6: Comparison between positive sera and conjugate testing.

Figure 3.7: Peptide profile for 15 HHV6 –IFA positive sera. A similar profile pattern can be observed in all the 15 sera.

Figure 3.8: Peptide reactivity profile of HHV6 IFA- positive samples. Graph plotted as the average of the positive ELISA readings.
Figure 3.9: Peptide reactivity of HHV6 profile with IFA-negative samples. Graph plotted as the average of the positive ELISA readings of 2 samples.

Figure 3.10: The net ELISA readings for the peptides representing the p101 carboxyl terminal protein. Net ELISA readings for each well was calculated by subtracting the average reading of all negative sera from the average reading of all the positive sera. The peptides that gave the highest reactivity were peptides 6-7, 19 and 44-45.

Figure 3.11: Major epitopes recognized by the 25 IFA-positive infant sera

Figure 3.12: Comparison of HHV6 IFA-negative (serum K59) and IFA-positive (serum 20) reactivities against peptides of the p101 protein.

Figure 3.13: Peptide reactivity profiles of 6 HHV6 - IFA positive breast milk. A similar profile pattern can be observed in all the 6 breast milk samples. Nine regions showed increased reactivity but the highest activities were obtained for peptides 2-3, 9, 13, 23, 41 and 43-44.

Figure 3.14: Peptide reactivity profiles of HHV6 IFA-positive samples. Graph plotted as the average of the positive ELISA reading.

Figure 3.15: IgA epitopes of HHV6 p101 carboxyl terminal detected in IFA-negative breast milk sample.

Figure 3.16: The net ELISA readings for peptides representing the p101 carboxyl terminal protein. Net ELISA reading for each well was calculated by subtracting the average reading of the negative breast milk from the average reading of the positive breast milk. The peptides that gave the highest reactivity were peptides 13, 23, 30-33, 37 and 41.

Figure 3.17: Major epitopes recognized by the 6 IFA-positive breast milk samples.

Figure 3.18: Epitope profiles comparison between HHV6 IFA-positive (BM18) and negative breast milk (BM4-).

Figure 3.19: Profiles of salivary IgA to the 46 peptides of HHV6 p101 nucleocapsid protein.

xxi
Figure 3.20: Average salivary IgA to peptides of HHV6 p101 nucleocapsid protein.

Figure 3.21: Peptides of HHV6 p101 nucleocapsid protein recognized by salivary IgA.

Figure 3.22: Cord blood and serum IgG to peptides of p101 HHV6 p101 nucleocapsid protein.

Figure 3.23: Epitope profile comparison between breast milk IgA (BM18) and serum IgG (Serum 40) to HHV6 p101 carboxyl terminal peptides.

Figure 3.24: Hydropathy plot for the 858 amino acid of the HHV6 p101 nucleocapsid protein. From this plot, amino acids from the most hydrophilic region at the carboxyl terminal were selected to be synthesized.

Figure 3.25: Hydropathy plot for amino acid 524 - 858 (334 amino acid) of the p101 carboxyl terminal protein of HHV6.

Figure 3.26: Surface accessible region plot for the 334 amino acids of the p101 carboxyl terminal protein of HHV6.

Figure 3.27: Secondary structure predictions for amino acids 1 to 334 of the p101 carboxyl terminal protein of HHV6 according to the NN_PREDICT programme by SWISSPROT.

Figure 3.28: Mobility plot for the 334 amino acids of the p101 carboxyl terminal protein of HHV6.

Figure 3.29: Coil structured region plot for the 334 amino acids of the p101 carboxyl terminal protein of HHV6.

Figure 4.1: Comparison of reactive regions recognized by serum IgG (coloured in red), breast milk IgA (coloured in blue) and salivary IgA (coloured in green).

Figure 4.2: The profile of HHV-6B sequence showing the epitopes as detected by various sources of sera (S-1→S-5), breast milk (B-1→B-8) and saliva (SV-1→SV-5).
LIST OF APPENDIX

Appendix 1: Abbreviations of amino acids used in peptide synthesis

Appendix 2: Schedule for Peptide Synthesis as generated by the Pepmaker programme from Chiron. The 46 peptides (334 amino acids of the carboxyl terminal) synthesized are shown. A synthesis coupling for one day together with dispensing positions is also shown.

Appendix 3: Numbering system as recommended by manufacturer. Assuming that this is block A, the filled wells are identified as A1(1,2), A6(5,6) and A11(3,4).

Appendix 4: Hydropathy plot: Numerical values for hydrophilicity according to the Hopp and Woods method. The hydrophilicity plot of the 334 amino acids from the carboxyl terminal is depicted in Figure 3.25.

Appendix 5: Surface accessibility plot: Numerical values for surface accessibility. The surface accessibility plot of the 334 amino acids from the carboxyl terminal is depicted in Figure 3.26.

Appendix 6: Secondary structure predictions: Numerical values for secondary structure for the 334 amino acids according to the NN_PREDICT programme from SWISSPROT. (Figure 3.27). The probe showing the highest numerical value becomes the secondary structure of choice for that particular amino acid.

Appendix 7: Mobility accessibility plot: Numerical values for amino acid mobility. The mobility plot of the 334 amino acids from the carboxyl terminal is depicted in Figure 3.28.

Appendix 8: Coiled Parameter plot: Numerical values for coil parameter. The coil parameter plot of the 334 amino acids from the carboxyl terminal is depicted in Figure 3.29.

xxiii