PERPUSTAKAAN UNIVERSITI MALAYA

ACE - 9815

Te-RICH CdTe THIN FILMS:

PHYSICAL AND ELECTRONIC PROPERTIES

by

SARAVANAN s/o KRISHNAN

A dissertation submitted as a partial fulfillment for the Masters of

Technology (Material Science), at Institute for Post Graduate

Studies and Research of

University Malaya 01. 2000 144.26 June 1997 MOHAMAD ZAHARI RPUSTAKAAN UTAMA A507731502

CONTENTS

Acknowledgment i		
List of Tablesii		
List of Figuresiii		
Abstract		
Chapter 1	: Introduction1	
1.1	: Introduction 1	
1.2	: Thin film preparation techniques : A review2	
1.3	: Growth and structural properties of thin films7	
1.4	: Optical properties of polycrystalline semiconductor thin films9	
1.5	: Quantum semiconductor nanoclusters12	
1.6	: Cadmium Telluride14	
1.7	: Objective of this study19	
Chapter 2	: Experimental techniques21	
2.1	: Sample preparation21	
2.2	: XRD	
2.3	: SEM/TEM/EDX26	
2.4	: Transmission Spectroscopy29	
2.5	: I-V Measurement	
Chapter 3	: Structural Properties - Results and Discussion	
3.1	: Thin Film Preparation34	

5

3.2	: X-Ray Diffraction
3.3	: SEM, TEM and EDX51
Chapter 4	: Optical and Electronic Properties - Results and Discussion 62
4.1	: Introduction
4.2	: Principles of the method62
4.3	: Determination of optical thickness64
4.4	: Determination of refractive index, geometrical thickness and
	extinction coefficient
4.5	: Dispersion of refractive index and the extinction coefficient73
4.6	: Absorption coefficient and evaluation of band gap80
4.7	: D.C. conductivity measurement
	4.7.1 : I-V measurement
	4.7.2 : Effect of thickness on dark resistivity
Chapter 5	: Conclusion102
5.1	: Conclusion102
5.2	: Suggestion for future work107

References

÷

ACKNOWLEDGMENTS

I would like to take this opportunity to thank my supervisors, Prof. Madya Dr. Muhamad Rasat bin Muhamad, Head of Physics department and Professor Suri Radhakrishna, Professor of Material Science, IPSR, for their guidance and helpful comments throughout the production of this thesis.

I also would like thank my friends, Anand, Khedr, Kumar and Yee for their fruitful comments and moral support. I also would like to extend my gratitude to my family members and to University of Malaya for giving me a financial assistance.

Lastly, I would like to thank Mrs. Vijaya, SEM technician and Mr. Raghu, science officer, for helping me with SEM/TEM/EDX analysis.

Finally, I thank GOD for making everything possible.

i

ŝ

List of Tables

Table 3.1	: Preparation conditions of CdTe thin films via e-beam evaporation		
	technique		
Table 3.2	: Lattice parameters of CdTe thin films 40		
Table 3.3	: Lattice spacing, microstrain, stress and cluster size43		
Table 3.4	: Microprobe analysis results of CdTe thin films60		
Table 4.1	: Determination of the order number and optical thickness66		
Table 4.2	: Refractive index and geometrical thickness		
Table 4.3	: Fitting parameters and film thickness71		
Table 4.4	: Dispersion energy, oscillator strength, plasma energy and		
	valence electron density		
Table 4.5	: Estimated band gap values of CdTe thin films and the shift		
	from single crystal band gap value90		
Table 4.6	: Dark resistivity of e-beam evaporated CdTe thin films98		

ii

List of Figures

	4
Figure 1.2 : Experimental CVD reactor	4
Figure 1.3 : Transmittance and reflectance measurement	11
Figure 1.4 : Measurement geometry for ellipsiometry	11
Figure 1.5 : Absorption spectra of CdS quantum dots	15
Figure 1.6 : The two equivalent interpenetrating face center cubic lattices	
of the zinc blende structure	15
Figure 1.7 : XRD peaks of cubic crystal CdTe	17
Figure 2.1 : Schematic system of Edwards-Auto 306 evaporator	22
Figure 2.2 : Component parts of six position e-beam sources (plan view)	23
Figure 2.3 : The principle of an X-Ray Diffractometer	25
Figure 2.4 : Goniometer X-Ray path	26
Figure 2.5 : Schematic drawing showing the electron column, the deflection	on
system and the electron detectors of a SEM	28
Figure 2.6 : Optical schematics of UV-3101PC	31
Figure 2.7 : (a) A cross sectional view of the chamber used in the depositi	on
of the electrode	
(b) A plan and a cross view of the deposited electrodes on the	
film	32
Figure 2.8 : Schematic circuit diagram for d.c. conductivity measurement.	33

	e-beam evaporation technique	35
Figure 3.2	: X-Ray diffractograms of CdTe thin film with varying film	
	thickness	37
Figure 3.3	: Effect of film thickness on the degree of preferential	
	orientation	38
Figure 3.4	: Histogram showing the relative difference of lattice constant	41
Figure 3.5	: Dependence of cluster size on the thickness CdTe film	47
Figure 3.6	: Histogram showing the distribution of nanocrystallites in	
	CdTe thin film	48
Figure 3.7	: Diffractogram of CdTe with varying crystallite size	49
Figure 3.8	: (a)-(f) Scanning electron micrograph of CdTe thin films	52
Figure 3.9	: (a)-(c) TEM micrograph of CdTe thin film	56
Figure 3.10	: Typical EDX spectra for CdTe thin film	59
Figure 4.1	: Transmission and reflectance of light by a single thin film	63
Figure 4.2	: Typical transmission spectra of thin film CdTe prepared by	
	e-beam evaporation	66
Figure 4.3	: Comparison between transmission curve of CdTe thin film	
	and the fitted curve	72
Figure 4.4	: Dispersion of refractive index of e-beam evaporated CdTe thin	
	films with different thickness	74
Figure 4.5	: 1/(n ² -1) vs. E ²	76
Figure 4.6	: Dispersion of extinction coefficient	79

porated CdTe thin film	81
	82
	84
	84
	85
	87
	88
density curve	88
film thickness	91
te size	94
between the calculated	
l band shift	95
dTe thin film	97
ickness	99
	borated CdTe thin film

v

.

ABSTRACT

Polycrystalline CdTe thin films have been deposited via electron-beam evaporation technique onto glass substrates at a temperature of 60 °C under a vacuum pressure of ~ 1 x 10^{-5} torr. Physical as well as electronic properties of the deposited thin films were studied.

Structural investigations revealed the presence of zinc blende structure growing along a preferential orientation of [111] plane. The thin films were formed by agglomeration of small nanocrystallites which varied in sizes from 30 -110 nm. These crystallites were found to be physically connected as can be seen from the coherence and adhesion of the thin film to the substrate. CdTe thin films prepared resulted in both compressive as well as tensile stress with the former dominating. Elemental analysis by EDX showed the presence of excess tellurium in the prepared samples. This behavior was attributed to the low condensation temperature of Te₂ compared to Cd. The excess Te was suggested to have been incorporated in the formation of grain boundaries and as a thin oxide layer.

The transmittance have been measured at normal incidence and the complex refractive index has been determined in the spectral region of 0.2 - 3.2 µm. Both the optical constants, n and k, showed a dispersion along the spectral region which was found to be thickness dependent. Fundamental absorption edge was evaluated from the first derivative of optical density and was found to be around 1.5 eV. However, a blue shift was oberved in the absorption edge and this was attributed to the quantum-size effect of the nanocrystallites and the presence of strain in the thin films. The contribution of these two effects were found to be smaller (~ 60 %) than the experimental shift observed. The remaining was thought to be due to the presence of amorphous phase and the presence of free Te in the sample.

Al/CdTe junctions prepared showed high dark resistivity (10⁶ - 10⁷ ohmcm), which was found to vary with film thickness. A sharp fall followed by a gradual decrease in resistivity was found as the film thickness increases. The behavior was attributed to the crystallite effect as well as the preferential orientation of growth in e-beam evaporated CdTe thin films.