Te-RICH CdTe THIN FILMS:

PHYSICAL AND ELECTRONIC PROPERTIES

by

SARAVANAN s/o KRISHNAN

A dissertation submitted as a partial fulfillment for the Masters of Technology (Material Science), at Institute for Post Graduate Studies and Research of

University Malaya

June 1997
CONTENTS

Acknowledgment ................................................................................................. i

List of Tables .................................................................................................. ii

List of Figures ................................................................................................. iii

Abstract ............................................................................................................. vi

Chapter 1  : Introduction.................................................................................. 1

1.1 : Introduction............................................................................................. 1

1.2 : Thin film preparation techniques : A review......................................... 2

1.3 : Growth and structural properties of thin films .................................... 7

1.4 : Optical properties of polycrystalline semiconductor thin films ....... 9

1.5 : Quantum semiconductor nanoclusters ................................................. 12

1.6 : Cadmium Telluride ................................................................................ 14

1.7 : Objective of this study .......................................................................... 19

Chapter 2  : Experimental techniques .......................................................... 21

2.1 : Sample preparation ............................................................................ 21

2.2 : XRD .................................................................................................... 25

2.3 : SEM/TEM/EDX ................................................................................ 26

2.4 : Transmission Spectroscopy .................................................................. 29

2.5 : I-V Measurement ................................................................................ 31

Chapter 3  : Structural Properties - Results and Discussion .................... 34

3.1 : Thin Film Preparation ........................................................................ 34
3.2 : X-Ray Diffraction ................................................................. 34
3.3 : SEM, TEM and EDX .............................................................. 51

Chapter 4 : Optical and Electronic Properties - Results and Discussion ... 62
  4.1 : Introduction ........................................................................... 62
  4.2 : Principles of the method ...................................................... 62
  4.3 : Determination of optical thickness ...................................... 64
  4.4 : Determination of refractive index, geometrical thickness and
        extinction coefficient ............................................................. 68
  4.5 : Dispersion of refractive index and the extinction coefficient ...... 73
  4.6 : Absorption coefficient and evaluation of band gap .................. 80
  4.7 : D.C. conductivity measurement ............................................ 96
        4.7.1 : I-V measurement .......................................................... 96
        4.7.2 : Effect of thickness on dark resistivity ............................. 98

Chapter 5 : Conclusion ................................................................. 102
  5.1 : Conclusion .......................................................................... 102
  5.2 : Suggestion for future work .................................................. 107

References
ACKNOWLEDGMENTS

I would like to take this opportunity to thank my supervisors, Prof. Madya Dr. Muhamad Rasat bin Muhamad, Head of Physics department and Professor Suri Radhakrishna, Professor of Material Science, IPSR, for their guidance and helpful comments throughout the production of this thesis.

I also would like thank my friends, Anand, Khedr, Kumar and Yee for their fruitful comments and moral support. I also would like to extend my gratitude to my family members and to University of Malaya for giving me a financial assistance.

Lastly, I would like to thank Mrs. Vijaya, SEM technician and Mr. Raghu, science officer, for helping me with SEM/TEM/EDX analysis.

Finally, I thank GOD for making everything possible.
List of Tables

Table 3.1 : Preparation conditions of CdTe thin films via e-beam evaporation technique .......................................................... 34

Table 3.2 : Lattice parameters of CdTe thin films ............................................. 40

Table 3.3 : Lattice spacing, microstrain, stress and cluster size ..................43

Table 3.4 : Microprobe analysis results of CdTe thin films .........................60

Table 4.1 : Determination of the order number and optical thickness ......66

Table 4.2 : Refractive index and geometrical thickness ..............................68

Table 4.3 : Fitting parameters and film thickness .........................................71

Table 4.4 : Dispersion energy, oscillator strength, plasma energy and valence electron density...................................................... 78

Table 4.5 : Estimated band gap values of CdTe thin films and the shift from single crystal band gap value .............................................90

Table 4.6 : Dark resistivity of e-beam evaporated CdTe thin films ..........98
List of Figures

Figure 1.1 : Electron-beam evaporation process ............................................. 4
Figure 1.2 : Experimental CVD reactor .......................................................... 4
Figure 1.3 : Transmittance and reflectance measurement .................................. 11
Figure 1.4 : Measurement geometry for ellipsometry ...................................... 11
Figure 1.5 : Absorption spectra of CdS quantum dots ..................................... 15
Figure 1.6 : The two equivalent interpenetrating face center cubic lattices of the zinc blende structure ................................................................. 15
Figure 1.7 : XRD peaks of cubic crystal CdTe ............................................... 17
Figure 2.1 : Schematic system of Edwards-Auto 306 evaporator ..................... 22
Figure 2.2 : Component parts of six position e-beam sources (plan view) ..... 23
Figure 2.3 : The principle of an X-Ray Diffractometer .................................. 25
Figure 2.4 : Goniometer X-Ray path ............................................................... 26
Figure 2.5 : Schematic drawing showing the electron column, the deflection system and the electron detectors of a SEM .................................................... 28
Figure 2.6 : Optical schematics of UV-3101PC ............................................ 31
Figure 2.7 : (a) A cross sectional view of the chamber used in the deposition of the electrode
(b) A plan and a cross view of the deposited electrodes on the film ......................... 32
Figure 2.8 : Schematic circuit diagram for d.c. conductivity measurement... 33
Figure 3.1 : Typical X-Ray diffractogram of CdTe thin film deposited by
e-beam evaporation technique .................................................. 35

Figure 3.2 : X-Ray diffractograms of CdTe thin film with varying film thickness ................................................................. 37

Figure 3.3 : Effect of film thickness on the degree of preferential orientation ................................................................. 38

Figure 3.4 : Histogram showing the relative difference of lattice constant.. 41

Figure 3.5 : Dependence of cluster size on the thickness CdTe film .......... 47

Figure 3.6 : Histogram showing the distribution of nanocrystallites in CdTe thin film................................................................. 48

Figure 3.7 : Diffractogram of CdTe with varying crystallite size .......... 49

Figure 3.8 : (a)-(f) Scanning electron micrograph of CdTe thin films ...... 52

Figure 3.9 : (a)-(c) TEM micrograph of CdTe thin film ................... 56

Figure 3.10 : Typical EDX spectra for CdTe thin film ....................... 59

Figure 4.1 : Transmission and reflectance of light by a single thin film ..... 63

Figure 4.2 : Typical transmission spectra of thin film CdTe prepared by e-beam evaporation ................................................................. 66

Figure 4.3 : Comparison between transmission curve of CdTe thin film and the fitted curve ................................................................. 72

Figure 4.4 : Dispersion of refractive index of e-beam evaporated CdTe thin films with different thickness ................................................................. 74

Figure 4.5 : 1/(n^2-1) vs. E^2 ....................................................................... 76

Figure 4.6 : Dispersion of extinction coefficient ................................................................. 79
Figure 4.7 : Absorption spectrum of e-beam evaporated CdTe thin film .... 81
Figure 4.8 : Absorption spectra of CdTe ................................................. 82
Figure 4.9(a) : \((\alpha E)^2\) vs. E ................................................................. 84
Figure 4.9(b) : \((\alpha E)^{1/2}\) vs. E ......................................................... 84
Figure 4.9(c) : \((\alpha E)^{3/2}\) vs. E ......................................................... 85
Figure 4.10 : Optical density of CdTe thin films ................................. 87
Figure 4.11 : Fitted optical density curve ........................................... 88
Figure 4.12 : First derivative of the fitted optical density curve............ 88
Figure 4.13 : Variation of band gap of CdTe with film thickness .......... 91
Figure 4.14 : Variation of band gap with crystallite size ..................... 94
Figure 4.15 : Histogram showing the comparison between the calculated

band gap shift and the experimental band shift .............................. 95
Figure 4.16 : I-V profile of e-beam evaporated CdTe thin film............ 97
Figure 4.17 : Variation of resistivity with film thickness ..................... 99
ABSTRACT

Polycrystalline CdTe thin films have been deposited via electron-beam evaporation technique onto glass substrates at a temperature of 60 °C under a vacuum pressure of ~ 1 x 10⁻⁵ torr. Physical as well as electronic properties of the deposited thin films were studied.

Structural investigations revealed the presence of zinc blende structure growing along a preferential orientation of [111] plane. The thin films were formed by agglomeration of small nanocrystallites which varied in sizes from 30 - 110 nm. These crystallites were found to be physically connected as can be seen from the coherence and adhesion of the thin film to the substrate. CdTe thin films prepared resulted in both compressive as well as tensile stress with the former dominating. Elemental analysis by EDX showed the presence of excess tellurium in the prepared samples. This behavior was attributed to the low condensation temperature of Te₂ compared to Cd. The excess Te was suggested to have been incorporated in the formation of grain boundaries and as a thin oxide layer.

The transmittance have been measured at normal incidence and the complex refractive index has been determined in the spectral region of 0.2 - 3.2 μm. Both the optical constants, n and k, showed a dispersion along the spectral region which was found to be thickness dependent. Fundamental absorption edge was evaluated from the first derivative of optical density and was found to be around 1.5 eV. However, a blue shift was observed in the absorption edge and this was attributed to the quantum-size effect of the nanocrystallites and the presence of strain in the thin films. The contribution of these two effects were found to be smaller (~ 60 %) than the experimental shift observed. The remaining was thought to be due to the presence of amorphous phase and the presence of free Te in the sample.

Al/CdTe junctions prepared showed high dark resistivity (10⁶ - 10⁷ ohm-cm), which was found to vary with film thickness. A sharp fall followed by a gradual decrease in resistivity was found as the film thickness increases. The behavior was attributed to the crystallite effect as well as the preferential orientation of growth in e-beam evaporated CdTe thin films.