CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>iii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iv</td>
</tr>
<tr>
<td>Contents</td>
<td>vii</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

1.1 An Overview of Solar Energy
1.2 The Objectives of This Research
1.3 The Advantages of Solar Energy
1.4 Problems and Solutions
1.5 The Photovoltaic (PV) Effect
 1.5.1 Theory of Photovoltaic Cells
1.6 Role of Silicon
 1.6.1 Preparing Single Crystal Silicon
 1.6.2 Conversion Efficiencies
 1.6.3 Amorphous Silicon
 1.6.4 Polycrystalline Thin Films
1.7 Other Semiconductor Materials
 1.7.1 Gallium Arsenide (GaAs) Photovoltaic Cells
 1.7.2 Multijunction Photovoltaic Cells
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>Electrical Contacts</td>
<td>17</td>
</tr>
<tr>
<td>1.9</td>
<td>Transparent Conductors</td>
<td>19</td>
</tr>
<tr>
<td>1.10</td>
<td>Theory of I-V Curves</td>
<td>20</td>
</tr>
<tr>
<td>1.10.1</td>
<td>Theory of Transient Effects</td>
<td>22</td>
</tr>
<tr>
<td>1.11</td>
<td>Junction Theory</td>
<td>23</td>
</tr>
<tr>
<td>1.12</td>
<td>Heterojunction Model and the SIS Structure</td>
<td>26</td>
</tr>
<tr>
<td>1.12.1</td>
<td>The Heterojunction Model</td>
<td>26</td>
</tr>
<tr>
<td>1.12.2</td>
<td>The Semiconductor-Insulator-Semiconductor (SIS) Structure</td>
<td>27</td>
</tr>
<tr>
<td>1.13</td>
<td>From Cells to Arrays</td>
<td>28</td>
</tr>
<tr>
<td>1.13.1</td>
<td>Balance of System</td>
<td>30</td>
</tr>
<tr>
<td>1.13.2</td>
<td>Flat-Plate Systems</td>
<td>30</td>
</tr>
<tr>
<td>1.13.3</td>
<td>Concentrator Systems</td>
<td>32</td>
</tr>
<tr>
<td>1.14</td>
<td>Light, The Sun and Solar Insolation</td>
<td>32</td>
</tr>
<tr>
<td>1.15</td>
<td>Band Gaps in Photovoltaic Cells</td>
<td>34</td>
</tr>
<tr>
<td>1.16</td>
<td>Thin Films</td>
<td>37</td>
</tr>
<tr>
<td>1.17</td>
<td>Thin Film Coating Techniques</td>
<td>38</td>
</tr>
<tr>
<td>1.17a</td>
<td>Chemical Deposition Techniques</td>
<td>38</td>
</tr>
<tr>
<td>1.17.1</td>
<td>Electrodeposition</td>
<td>38</td>
</tr>
<tr>
<td>1.17.2</td>
<td>Chemical Vapour Deposition</td>
<td>39</td>
</tr>
<tr>
<td>1.17.3</td>
<td>Spray Pyrolysis</td>
<td>40</td>
</tr>
<tr>
<td>1.17b</td>
<td>Physical Deposition Techniques</td>
<td>40</td>
</tr>
<tr>
<td>1.17.4</td>
<td>Vacuum Evaporation</td>
<td>40</td>
</tr>
</tbody>
</table>
Contents

1.17.5 Sputtering

1.17.6 Molecular Beam Epitaxy (MBE)

CHAPTER 2 : EXPERIMENTAL TECHNIQUES

2.1 Method of Sample Preparation

2.2 Electrodeposition

2.2.1 Voltammetry

2.2.2 Cathodic Polarisation

2.2.3 Substrate Cleaning

2.3 Electron Beam Sputtering

2.4 Material Characterisations

2.4.1 X-Ray Diffractometry

2.4.2 Scanning Electron Microscopy (SEM)

2.4.3 Energy Dispersive Analysis of X-rays (EDX)

2.4.4 Ultraviolet and Visible Spectroscopy (UV/VIS)

2.5 Electrical Characterisation

2.5.1 Open Circuit Voltage (OCV), Internal Resistance (R_i) and Short Circuit Current (I_{SC}) of Cadmium Based Films

2.5.2 The Current-Voltage Characteristic Curve
CHAPTER 3: RESULTS AND DISCUSSION FOR CADMIUM TELLURIDE (CdTe)

3.1 Analysis Procedure

3.1.1 Sequence of Events

3.2 Electrodeposition of CdTe

3.2.1 The Electrolyte

3.2.2 The Electrodes

3.3 The Electrodeposition Process

3.4 Electron Beam Sputtering - CdTe

3.5 Material Characterisation

3.5.1 X-ray Diffractometry

3.5.2 Energy Dispersive Analysis of X-rays (EDX)

3.5.3 Scanning Electron Microscopy (SEM)

3.5.4 Ultraviolet and Visible (UV/VIS) Optical Characterisation

3.6 Electrical Characterisation

3.6.1 Open Circuit Voltage (OCV) and Short Circuit Current (ISC)

3.6.2 Current-Voltage (I-V Characteristic Curve)

CHAPTER 4: RESULTS AND DISCUSSION FOR CADMIUM SELENIDE (CdSe)

4.1 Analysis Procedure

4.1.1 Sequence of Events
4.2 Electrodeposition of CdSe

4.2.1 The Electrolyte

4.2.2 The Electrodes

4.3 The Electrodeposition Process

4.4 Electron Beam Sputtering - CdSe

4.5 Material Characterisation

4.5.1 X-ray Diffractometry

4.5.2 Energy Dispersive Analysis of X-rays (EDX)

4.5.3 Scanning Electron Microscopy (SEM)

4.5.4 Ultraviolet and Visible (UV/VIS) Optical Characterisation

4.6 Electrical Characterisation

4.6.1 Open Circuit Voltage (OCV) and Short Circuit Current (Isc)

4.6.2 Current-Voltage (I-V Characteristic Curve)

CHAPTER 5 : RESULTS AND DISCUSSION FOR CADMIUM TELLURIDE-SELENIDE (CdTe_xSe_1-x)

5.1 Analysis Procedure

5.1.1 Sequence of Events

5.2 Electrodeposition of Cadmium Telluride-Selenide (CdTe_xSe_1-x)

5.2.1 The Electrolyte

5.2.2 The Electrodes

5.3 The Electrodeposition Process
5.4 Electron Beam Sputtering of CdTe$_{0.5}$Se$_{0.5}$

5.5 Material Characterisation

5.5.1 X-ray Diffractometry

5.5.2 Energy Dispersive Analysis of X-rays (EDX)

5.5.3 Scanning Electron Microscopy (SEM)

5.5.4 Ultraviolet and Visible (UV/VIS) Optical Characterisation

5.6 Electrical Characterisation

5.6.1 Open Circuit Voltage (OCV) and Short Circuit Current (I$_{SC}$)

5.6.2 Current-Voltage (I-V Characteristic Curve)

5.7 Electrodeposition of Large Area Solar Cells

5.8 Conclusion For The Formation of Ternary Compound

REFERENCES