THE PHYSICAL CHARACTERISTICS OF CADMIUM BASED THIN FILMS

BY

RAVISELVAN PARARAJASINGAM

B.Sc.(Hons), M.Phil.(IPSP)

THESIS SUBMITTED TO
UNIVERSITY OF MALAYA
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

INSTITUTE OF POSTGRADUATE STUDIES AND RESEARCH
UNIVERSITY OF MALAYA
1998
DECLARATION

I hereby declare that the work reported in this thesis is my own unless specified and duly acknowledged by quotation.

25 March 1998

Raviselvan Pararajasingam

HFD 9505
ACKNOWLEDGMENT

My first expression of appreciation goes out to my beloved parents, who have given me continuous love, support and encouragement to achieve success in my undertakings.

I would also like to express my deepest gratitude to my supervisor, Prof. S. Radhakrishna, to whom I have been acquainted to for many years. His guidance, advice and motivation had encouraged me beyond an academic scope. He has acted as a mentor and personal advisor during the past years and has been extremely instrumental for this research to be a success.

To my beloved wife, Shanthi, words cannot describe my appreciation for all the encouragement, assistance and love that you have shown me through the endeavours of this research and as my life companion.

My sincere and heartfelt thank you goes out to the establishment of University Malaya for its vital assistance in the accomplishment of this work as well as the numerous lecturers and academic staff who have been of great help. Also thanks to my colleagues and fellow students who have made the course of my work pleasant and smooth with their invaluable help.
ABSTRACT

Alternative fuel sources has been the focus of much attention due to the expected shortage of fossil fuels by the turn of the century. Among the more promising sources of energy being commercially developed, solar power has been proven to be a prospective choice for providing energy into the future. It has the advantage of having an infinite source of energy from the sun and does not require mechanical or moving components such as turbines and generators in its design of energy output thus a lower maintenance and running cost. The area of solar energy coatings is of prime interest in this study.

The main objective of this research is to study the possibility of enhancing the solar cell performance by fabricating a ternary compound thin film coating \(\text{CdTe}_x\text{Se}_{1-x} \) from two established binary compounds which are cadmium telluride (CdTe) and cadmium selenide (CdSe). It is predicted that this ternary compound would have an energy gap in between that of CdTe(1.45eV) and CdSe(1.74eV) that would better match the peak of the solar radiation spectra (1.5-1.55eV). This ternary compound would generally yield a more efficient solar cell if the energy gap is altered in such a manner.

Another objective here is to study the possibility of utilising waste silicon wafers from local industries. These wafers could be used as substrates on which the solar coatings can be made and hence a commercial possibility.

The individual components of CdTe and CdSe were first fabricated and studied individually so that a comparative study could be done with the ternary compound \(\text{CdTe}_x\text{Se}_{1-x} \) using identical deposition and characterisation parameters. It was also important to take this initial step to verify the accuracy and composition of the electrodeposited and sputtered films. The characterisation techniques used were x-ray diffraction, energy dispersive analysis of x-rays and UV/VIS spectrometry. The emphasis on sample preparation was mainly on
electrodeposition as it is a low temperature process and is generally cost effective due to minimal material wastage and low power consumption but yet has the capability to yield solar coatings of good quality.

Cadmium telluride (CdTe) films were successfully electrodeposited on silicon and ITO substrates at a deposition voltage of 0.67V using a copper counter electrode. The electrolytic bath consisted of CdCl₂ or CdSO₄ (0.3M), TeO₂ (1mM) and EDTA (15mM). To eliminate the formation of copper on the film, it was found that there was a necessity to exchange the copper electrodes at five minute intervals and to minimise the deposition times as much as possible. All depositions were done in a stirred bath at a constant temperature of 57°C as a more uniform and adhesive coating was formed. CdTe was also sputtered on silicon for the purpose of comparing its current voltage (I-V) characteristics with electrodeposited films. The XRD and EDX characterisation studies revealed an accurate deposition for both the films. The optical analysis also revealed values of the energy gap and refractive index to be very close to theoretical values. The studies on the I-V curve revealed that the sputtered film had only a marginal advantage in terms of cell performance. The electrodeposited technique could therefore be said to produce solar cells of comparable performance.

The same procedure was repeated for the fabrication of CdSe using a voltage of 0.65V. The electrolytic bath consisted of the same components with SeO₂ (0.9mM) replacing TeO₂. CdSe was also sputtered on silicon and glass for characterisation purposes. Films of electrodeposited and sputtered CdSe was subjected to material and optical characterisation studies and were found to be accurate in terms of composition and had close to theoretically specified values. This had confirmed that the techniques used were reliable and could fabricate thin films accurately. The I-V characteristic curve revealed a marginal advantage of sputtered films over those electrodeposited. On the whole, the I-V performance was less than that of CdTe films which have an energy gap closer to the peak radiation energy of the sun.
The ternary compound CdTe$_x$Se$_{1-x}$ was electrodeposited from an electrolyte containing CdCl$_2$ (0.3M), SeO$_2$ (0.45mM), TeO$_2$ (0.5mM) and EDTA (15mM). The depositions were done on silicon and ITO at 0.67V with copper counter electrodes. The electrolytic bath was constantly stirred and kept at a temperature of 570C. The value of X in the ternary compound formula was varied successfully by changing the volume of the components in the electrolyte. The ternary compound was also prepared by sputtering using a 50-50% mixture of CdTe and CdSe granules of 99.99% purity. The XRD spectra of both the electrodeposited and sputtered films revealed emergence of a new peak at 24.50 (2θ) (the lattice spacing, $d=3.63\text{Å}$) which lies in between CdTe (23.680) and CdSe (25.40). This fact is of great interest as it shows a successful deposition of a new phase polycrystalline ternary compound.

The I-V characteristics of CdTe$_x$Se$_{1-x}$ films showed improved solar cell performances when compared to films of CdTe and CdSe deposited by similar methods. The best solar films obtained by electrodeposition was of the composition of CdTe$_{0.75}$Se$_{0.25}$.
CONTENTS

Declaration	ii
Acknowledgement	iii
Abstract	iv
Contents	vii

CHAPTER 1: INTRODUCTION

1.1 An Overview of Solar Energy | 1
1.2 The Objectives of This Research | 1
1.3 The Advantages of Solar Energy | 5
1.4 Problems and Solutions | 6
1.5 The Photovoltaic (PV) Effect | 8
 1.5.1 Theory of Photovoltaic Cells | 10
1.6 Role of Silicon | 12
 1.6.1 Preparing Single Crystal Silicon | 13
 1.6.2 Conversion Efficiencies | 13
 1.6.3 Amorphous Silicon | 14
 1.6.4 Polycrystalline Thin Films | 15
1.7 Other Semiconductor Materials | 16
 1.7.1 Gallium Arsenide (GaAs) Photovoltaic Cells | 16
 1.7.2 Multijunction Photovoltaic Cells | 17
CHAPTER 3 : RESULTS AND DISCUSSION FOR CADMIUM TELLURIDE (CdTe) 72

3.1 Analysis Procedure 72

3.1.1 Sequence of Events 73

3.2 Electrodeposition of CdTe 74

3.2.1 The Electrolyte 74

3.2.2 The Electrodes 77

3.3 The Electrodeposition Process 80

3.4 Electron Beam Sputtering - CdTe 82

3.5 Material Characterisation 83

3.5.1 X-ray Diffractometry 83

3.5.2 Energy Dispersive Analysis of X-rays (EDX) 88

3.5.3 Scanning Electron Microscopy (SEM) 95

3.5.4 Ultraviolet and Visible (UV/VIS) Optical Characterisation 99

3.6 Electrical Characterisation 107

3.6.1 Open Circuit Voltage (OCV) and Short Circuit Current (ISC) 107

3.6.2 Current-Voltage (I-V Characteristic Curve) 108

CHAPTER 4 : RESULTS AND DISCUSSION FOR CADMIUM SELENIDE (CdSe) 111

4.1 Analysis Procedure 111

4.1.1 Sequence of Events 111
4.2 Electrodeposition of CdSe

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1</td>
<td>The Electrolyte</td>
<td>112</td>
</tr>
<tr>
<td>4.2.2</td>
<td>The Electrodes</td>
<td>114</td>
</tr>
</tbody>
</table>

4.3 The Electrodeposition Process

4.4 Electron Beam Sputtering - CdSe

4.5 Material Characterisation

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.1</td>
<td>X-ray Diffractometry</td>
<td>115</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Energy Dispersive Analysis of X-rays (EDX)</td>
<td>120</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Scanning Electron Microscopy (SEM)</td>
<td>126</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Ultraviolet and Visible (UV/VIS) Optical Characterisation</td>
<td>130</td>
</tr>
</tbody>
</table>

4.6 Electrical Characterisation

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6.1</td>
<td>Open Circuit Voltage (OCV) and Short Circuit Current (I_SC)</td>
<td>137</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Current-Voltage (I-V Characteristic Curve)</td>
<td>138</td>
</tr>
</tbody>
</table>

CHAPTER 5: RESULTS AND DISCUSSION FOR CADMIUM TELLURIDE-SELENIDE (CdTe_xSe_1-x)

5.1 Analysis Procedure

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.1</td>
<td>Sequence of Events</td>
<td>142</td>
</tr>
</tbody>
</table>

5.2 Electrodeposition of Cadmium Telluride-Selenide (CdTe_xSe_1-x)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.1</td>
<td>The Electrolyte</td>
<td>143</td>
</tr>
<tr>
<td>5.2.2</td>
<td>The Electrodes</td>
<td>145</td>
</tr>
</tbody>
</table>

5.3 The Electrodeposition Process

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>146</td>
</tr>
</tbody>
</table>
5.4 Electron Beam Sputtering of CdTe$_{0.5}$Se$_{0.5}$

5.5 Material Characterisation

5.5.1 X-ray Diffractometry

5.5.2 Energy Dispersive Analysis of X-rays (EDX)

5.5.3 Scanning Electron Microscopy (SEM)

5.5.4 Ultraviolet and Visible (UV/VIS) Optical Characterisation

5.6 Electrical Characterisation

5.6.1 Open Circuit Voltage (OCV) and Short Circuit Current (I$_{SC}$)

5.6.2 Current-Voltage (I-V Characteristic Curve)

5.7 Electrodeposition of Large Area Solar Cells

5.8 Conclusion For The Formation of Ternary Compound

REFERENCES