TABLE OF CONTENTS

ORIGINAL LITERARY WORK DECLARATION	ii
ACKNOWLEDGMENTS	iii
DEDICATION	iv
ABSTRACT	v
ABSTRAK	vii
TABLE OF CONTENTS	ix
LIST OF FIGURES	xiii
LIST OF TABLES	xvi
LIST OF SYMBOLS AND ABREVIATIONS	xvii

CHAPTER ONE INTRODUCTION

1.1	Amine Processes	1
1.2	Scope and Objectives of the Thesis	3
1.3	Study Method	5
1.4	Structure of the Thesis	5

CHAPTER TWO LITERATURE REVIEW

2.1	Introduction	7
2.2	Acid Gas Absorption Processes	8
2.3	Alkanolamine Solvents for Carbon Dioxide Capture	11
	2.3.1 Monoethanolamine and methyldiethanolamine2.3.2 Activated Amines with Piperazine2.3.3 Sterically Hindered Amines2.3.4 Methylaminoethanol	14 15 16 18
2.4	Solubility of Carbon Dioxide in Ethanolamines	19
	2.4.1 Effect of Temperature2.4.2 Effect of CO₂ Partial Pressure	20 21 vi
		V I

2.4.3	Effect of Amine Concentration	21
2.4.4	Carbamate Ion Concentration	22
2.4.5	Foaming	23

CHAPTER THREE MATHEMATICAL MODEL

3.1	Introduction	27
3.2	Vapour-Liquid Equilibrium	28
3.3	Reaction Mechanism	29
3.4	Equilibrium Constants, K_i	32
3.5	Proposed Mathematical Model	36
3.6	Summary	37

CHAPTER FOUR METHODOLOGY

4.1	Introduction	
4.2	Reagents	38
	 4.2.1 Methylaminoethanol 4.2.2 Barium Chloride 4.2.3 Hydrochloric Acid and Sodium Hydroxide 4.2.4 Nitrogen and Carbon Dioxide Gases 4.2.5 Filter Paper 4.2.6 Water 	38 39 39 40 40 40
4.3	Experimental Set-Up	40
4.4	Experimental Procedure	
4.5	Equations	
4.6	Calculations	45
	 4.6.1 Determination of Amine Concentration 4.6.2 Determination of CO₂ Partial Pressure 4.6.3 Determination of CO₂ Loading 4.6.4 Determination of Carbamate Ion Concentration 	45 46 46 46

CHAPTER FIVE CO₂ ABSORPTION RESULTS AND DISCUSSION

5.1	Introd	Introduction	
5.2	Valida	tion of the Experimental Procedure	48
5.3	Error .	Analysis and Accuracy	49
5.4	Solubi	lity of CO ₂ in 2-Methylaminoethanol	50
	5.4.1	Effect of Temperature and Partial Pressure on CO ₂	53
	5.4.2 5.4.3 5.4.4	Effect of Amine Concentration on CO ₂ Loading Carbamate Ion Concentration Equilibrium Time	55 57 60
5.5	Perfor Alkan	mance Comparison Between MAE and Other olamines	60
	5.5.1	Comparison with Monoethanolamine(MEA)	60
	5.5.2 5.5.2	Comarison with Diethanolamine (DEA) Comparison with 2-Amino-2-methylpropanol	61 62
	5.5.3	(AMP) Comparison with 2-Amino-2-methylpropandiol	63
	5.5.4 5.5.5	(AMPD) Comparison with Methyldiethanolamine (MDEA) Comparison with Triisopropylamine (TIPA)	64 66
5.6	Summ	ary	67
CHAPTER SIX	VLE N	MODELING RESULTS AND DISCISSION	
6.1	Introd	uction	68
6.2	Theoretical Solubility of CO ₂ in MAE		68
6.3	Summary		83
CHAPTER SEVEN	CONC	CLUSIONS AND RECOMMENDATIONS	
7.1	Introduction		85
7.2	Conclusions		85
7.3	Recommendations		87

APPENDICES	APPENDIX A: Amine Concentration Data Before and After CO ₂ Absorption	94
	APPENDIX B: pH Data and Time to Reach Equilibrium	96
	APPENDIX C: Non-Linear Regression Program Results for Estimating the Parameters for K_2 Correlation	98
	APPENDIX D: Equilibrium Constant Data for Hydrolysis of Carbamate (K_2)	100
	APPENDIX E: List of Publications	102

LIST OF FIGURES

Figure 1.1	Distribution of greenhouse gases in Earth's atmosphere (Source: www.umich.edu)	1
Figure 1.2	Schematic diagram of a typical absorption-based CO ₂ capture unit from flue gases using amine solvents (Source: Thitakamol <i>et al.</i> 2007)	3
Figure 2.1:	Schematic diagram of the equilibrium process of CO_2 gas absorption into aqueous amine solution, (Souce: Si Ali, 2007)	9
Figure 2.2:	Process selection chart for the CO ₂ removal processes (Source: Shaw and Hughes, 2001)	10
Figure 2.3:	Structures of some commercially famous amines (Source: www.chemicalbook.com)	12
Figure 4.1:	Screening apparatus for CO ₂ absorption	41
Figure 4.2:	Typical curve for variation of pH with time during CO_2 absorption	42
Figure 4.3:	Typical curve for titration of carbonated amine with standard HCl solution	43
Figure 4.4:	Typical curve for titration of carbonated amine with standard NaOH solution	44
Figure 4.5:	Typical curve for titration of carbonated amine, barium chloride mixture with standard HCl solution	44
Figure 5.1:	Variation of CO_2 loading with CO_2 partial pressure for 2.5 M MEA at 40 °C; Jou et al. (1978) and this work	49
Figure 5.2:	Variation of CO ₂ loading in 1.0 M MAE with partial pressure at 30 $^{\circ}$ C, 40 $^{\circ}$ C and 60 $^{\circ}$ C	53
Figure 5.3:	Variation of CO ₂ loading in 2.0 M MAE with partial pressure at 30 $^{\rm o}C$, 40 $^{\rm o}C$ and 60 $^{\rm o}C$	54
Figure 5.4:	Variation of CO ₂ loading with partial pressure of 4.0 M MAE at 30 $^{\rm o}\text{C}$	54
Figure 5.5:	Variation CO_2 loading with CO_2 partial pressure of 1.0 M MAE, 2.0 M MAE and 4.0 M MAE, at 30 $^{\circ}C$	55

Figure 5.6:	Variation CO_2 loading with CO_2 partial pressure of 1.0 M MAE and 2.0 M MAE, at 30 $^{\circ}C$	56
Figure 5.7:	Variation CO ₂ loading with CO ₂ partial pressure at 60 $^{\rm o}\rm C$ of 1.0 M and 2.0 M MAE	56
Figure 5.8:	Variation of carbamate ions concentration with CO ₂ loading at 30 °C, 40 °C, and 60 °C	59
Figure 5.9:	Variation of carbamate ions concentration with CO_2 partial pressure of 1.0 M MAE at 30 °C, 2.0 M MAE at 30 °C, 1.0 M MAE at 40 °C, 1.0 M MAE at 60 °C and 2.0 M MAE at 60 °C.	59
Figure 5.10:	Variation of CO_2 loading with CO_2 partial pressure at 40 °C, 2.0 M MAE and 2.0 M MEA	61
Figure 5.11:	Variation of CO_2 loading with CO_2 partial pressure of 2.0 M MAE and 2.0 M DEA at 40 °C and 60 °C	62
Figure 5.12:	Variation CO ₂ loading with CO ₂ partial pressure at 30 $^{\circ}$ C of 2.0 M MAE and 2.0 M AMP	63
Figure 5.13:	Variation CO ₂ loading with CO ₂ partial pressure at 40 $^{\circ}$ C of 1.0 M MAE and 1.0 M AMPD	64
Figure 5.14:	Variation CO ₂ loading with CO ₂ partial pressure at 30 $^{\circ}$ C of 2.0 M MAE and 2.0 M MDEA	65
Figure 5.15:	Variation CO ₂ loading with CO ₂ partial pressure of 2.0 M MAE, at 30 $^{\circ}$ C, 2.0 M MAE at 40 $^{\circ}$ C, 2.0 M TIPA at 30 $^{\circ}$ C and 2.0 M TIPA at 40 $^{\circ}$ C	66
Figure 6.1:	Flowchart of the steps adopted to calculate theoretical loading	70
Figure 6.2:	Experimental and theoretical loading of CO_2 in 1.0 M MAE at 30 °C	74
Figure 6.3:	Experimental and theoretical loading of CO_2 in 2.0 M MAE at 30 °C	74
Figure 6.4:	Experimental and theoretical loading of CO_2 in 4.0 M MAE at 30 °C	75
Figure 6.5:	Experimental and theoretical loading of CO_2 in 1.0 M MAE at 40 °C	75
Figure 6.6:	Experimental and theoretical loading of CO_2 in 2.0 M MAE at 40 °C	76
Figure 6.7:	Experimental and theoretical loading of CO_2 in 1.0 M MAE at 60 °C	76

xi

Figure 6.8:	Experimental and theoretical loading of CO_2 in 2.0 M MAE at 60 °C	77
Figure 6.9:	Comparison experimental and predicted CO_2 loading in MAE 1.0 M 30 °C, 2.0 M 30 °C, 4.0 M 30 °C, 1.0 M 40 °C, 2.0 M 40 °C, 1.0 M 60 °C and 2.0M 60 °C	78
Figure 6.10:	Liquid phase concentration profile in carbonated solution of 1.0 M MAE at $30 ^{\circ}\text{C}$	80
Figure 6.11:	Liquid phase concentration profile in carbonated solution of 2.0 M MAE at 30 $^{\circ}$ C	80
Figure 6.12	Liquid phase concentration profile in carbonated solution of 4.0 M MAE at 30 $^{\rm o}{\rm C}$	81
Figure 6.13	Liquid phase concentration profile in carbonated solution of 1.0 M MAE at $40 ^{\circ}\text{C}$	81
Figure 6.14	Liquid phase concentration profile in carbonated solution of 2.0 M MAE at 40 $^{\rm o}{\rm C}$	82
Figure 6.15	Liquid phase concentration profile in carbonated solution of 1.0 M MAE at 60 $^{\circ}$ C	82
Figure 6.16	Liquid phase concentration profile in carbonated solution of 2.0 M MAE at 60 $^{\circ}$ C	83

LIST OF TABLES

Table 2.1:	Selected Literature Review on CO ₂ absorption by amine solvents	25
Table 3.1:	Values of the coefficients for equation (3.21)	33
Table 3.2:	Values of pK_1 at different temperatures (Little et al, 1990)	34
Table 4.1:	Chemical and physical properties of MAE (chemicalland21.com)	39
Table 5.1:	Experimental carbon dioxide loading in 1.0 M MAE at 30 °C, 40 °C, and 60 °C and at various CO ₂ partial pressures.	51
Table 5.2:	Experimental carbon dioxide loading in 2.0 M and 4.0 M MAE at 30 °C, 40 °C, and 60 °C and at various CO ₂ partial pressures.	52
Table 5.3:	Contribution of carbamate ion to the overall absorbed CO_2 in MAE	58
Table 6.1:	Experimental and theoretical carbon dioxide loading in 1.0 M MAE at 30 °C, 40 °C, and 60 °C and at various CO_2 partial pressures with % error.	71
Table 6.2:	Experimental and theoretical carbon dioxide loading in 2.0 M and 4.0 M MAE at 30 °C, 40 °C, and 60 °C and at various CO_2 partial pressures with % error.	72
Table A.1	Amine concentration before and after CO_2 absorption for 1.0 M MAE at 30, 40 and 60 °C	94
Table A.2	Amine concentration before and after CO_2 absorption test for 2.0 M MAE at 30, 40 and 60 °C and 4.0 M MAE at 30 °C	95
Table B.1	Amine pH data before and after CO_2 absorption and time to reach equilibrium for 1.0 M MAE at 30, 40 and 60 $^{\circ}C$	96
Table B.2	Amine pH data before and after CO_2 absorption and time to reach equilibrium for 2.0 M MAE at 30, 40 and 60 $^{\circ}C$ and 4.0 M at 30 $^{\circ}C$	97
Table D.1	Equilibrium constant data for hydrolysis of carbamate for 1.0 M MAE at 30, 40 and 60 $^{\rm o}{\rm C}$	100
Table D.2	Equilibrium constant data for hydrolysis of carbamate ion for 2.0 M MAE at 30, 40 and 60 $^{\circ}$ C and 4.0 M at 30 $^{\circ}$ C	101

LIST OF SYMBOLS AND ABBREVIATIONS

AEEA 2-(2-aminoethylaminoethanol) AHPD 2-amino2-hydroxymethyl-1,3-propandiol Amine Am AMP 2-amino-2-methylpropanol AMPD 2-amino-2-methylpropandiol Number of moles of a base В $BaCl_2$ Barium chloride BaCO₃ Barium carbonate CO_2 Carbon dioxide CO_{3}^{2-} Carbonate ion DEA Diethanolamine DGA Diglycolamine E_A Activation Energy EAE Ethylaminoethanol Experimental exp. H_2O Water H_2S Hydrogen sulphide HCl Hydrochloric acid Henry's constant H_{CO2} HCO₃⁻ Bicarbonate ion Κ Kelvin Acid dissociation constant K_a Κa Apparent acid dissociation constant

K_i	Equilibrium constant of species <i>i</i>
K_{OV}	Overall equilibrium constant
MAE	2(methylamino)ethanol
MAECOO	Carbamate ion of methylaminoethanol
\mathbf{MAEH}^{+}	Protonated amine
MDEA	Methyldiethanolamine
MEA	Monoethanolamine
M_i	Molarity of species i (mol.dm ⁻³)
Ml	Millilitre (= cm^3)
MPE	Absolute mean percentage error
N_2	Nitrogen gas
NaCl	Sodium chloride
NaOH	Sodium hydroxide
Р	Pressure, kPa
P_{CO2}	Partial pressure of CO ₂ (kPa)
pK_a	$-\log_{10}K_a$
PZ	Piperazine
R	Alkyl group
R^2	Coefficient of determination
Т	Temperature (°C)
TEA	Trienthanolamine
theo.	Theoretical
TIPA	Triisopropylamine
V_i	Volume of liquid i (cm ³)
VLE	Vapour-liquid equilibria
А	Loading (mol.CO ₂ /mol.amine)