Genetic Diversity Of *Salmonella typhi*

By

Satheesh Nair
(B. Sc. Hons., Penang, Malaysia; M. Sc., Singapore)

Perpustakaan Universiti Malaya

A510344460

July 2000

A thesis submitted for the degree of Doctor of Philosophy (Ph. D.)
to The Institute Of Postgraduate Studies And Research, University
of Malaya, Kuala Lumpur, Malaysia
For my Amma and Acha,

who have made me what I am.

.......... To my sisters, brothers and Ernst-Theo for believing

in me and giving me their love, strength and support.
Statement

AFLP analysis of the *Salmonella typhi* isolates in Chapter 4 was performed by Dr. Edgar Schreiber, PE Biosystems Foster City, California, U. S. A.

The remainder of the work described in this thesis is my own original work. I carried out the SSCP analysis (Chapter 5) in the laboratory of Prof. Martin Altwegg, Department of Medical Microbiology, University of Zürich, Zürich, Switzerland.

Satheesh Nair,

IPSP, University of Malaya,

Kuala Lumpur, Malaysia.

Statement

AFLP analysis of the *Salmonella typhi* isolates in Chapter 4 was performed by Dr. Edgar Schreiber, PE Biosystems Foster City, California, U. S. A.

The remainder of the work described in this thesis is my own original work. I carried out the SSCP analysis (Chapter 5) in the laboratory of Prof. Martin Altwegg, Department of Medical Microbiology, University of Zürich, Zürich, Switzerland.

Satheesh Nair,
IPSP, University of Malaya,
Kuala Lumpur, Malaysia.

Acknowledgement

I wish to express my sincere thanks and appreciation to my supervisor (Ass. Prof. Thong Kwai Lin) and my consultants (Dr. Tikki Pang and Prof. Martin Altwegg) for their guidance and support throughout the course of my work.

I am grateful to the following persons who have provided the bacterial strains for this study: Prof. S. D. Puthucheary, Department of Medical Microbiology, Faculty of Medicine, University of Malaya; Dr. R. M. Yassin, Salmonella Reference Centre, IMR, Kuala Lumpur; Prof. Martin Altwegg, Department of Medical Microbiology, University of Zürich, Zürich, Switzerland; Dr. A. M. Cardano, Departamento de Control Nacional, Instituto de Salud Publica de Chile, Santiago, Chile; Dr. M. Passey and Dr. A. Clegg, Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea and Dr. Andre Burnens, Swiss National Reference Laboratory for Foodborne Diseases, University of Berne, Berne, Switzerland.

My special thanks to Dr. Ken Sanderson, Department of Biological Sciences, University of Calgary, Canada; Dr. Eduardo Groisman, Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, U. S. A. and Dr. Edmundo Calva, Instituto de Biotecnologia, UNAM, Mexico for providing the plasmid probes used in this study.

Thanks to all the lab members, past (Vijay, Geetha, Nesa, Tang, Raj, Bhasky and Anand) and present (Kamariah, Yee Ling, Chan, Mr. Dorai and Mr. Ow) who have made my working life so much fun in LAB A407. To Val, Suja and Joyce for being there. And to everyone else who have played a part in my life here in Kuala Lumpur.

To my labmates and friends in Zürich, Switzerland (HPH, Silvia, Sonia, Cyril, Miss X and the rest of the gang), thanks!

A special thanks to my bug brother (Chew Chieng), Van and Mel for being who you are and for helping me in so many ways.
Acknowledgement

I wish to express my sincere thanks and appreciation to my supervisor (Ass. Prof. Thong Kwai Lin) and my consultants (Dr. Tikki Pang and Prof. Martin Altwegg) for their guidance and support throughout the course of my work.

I am grateful to the following persons who have provided the bacterial strains for this study: Prof. S. D. Puthucheary, Department of Medical Microbiology, Faculty of Medicine, University of Malaya; Dr. R. M. Yassin, Salmonella Reference Centre, IMR, Kuala Lumpur; Prof. Martin Altwegg, Department of Medical Microbiology, University of Zürich, Zürich, Switzerland; Dr. A. M. Cardano, Departamento de Control Nacional, Instituto de Salud Publica de Chile, Santiago, Chile; Dr. M. Passey and Dr. A. Clegg, Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea and Dr. Andre Burnens, Swiss National Reference Laboratory for Foodborne Diseases, University of Berne, Berne, Switzerland.

My special thanks to Dr. Ken Sanderson, Department of Biological Sciences, University of Calgary, Canada; Dr. Eduardo Groisman, Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, U. S. A. and Dr. Edmundo Calva, Instituto de Biotecnologia, UNAM, Mexico for providing the plasmid probes used in this study.

Thanks to all the lab members, past (Vijay, Geetha, Nesa, Tang, Raj, Bhasky and Anand) and present (Kamariah, Yee Ling, Chan, Mr. Dorai and Mr. Ow) who have made my working life so much fun in LAB A407. To Val, Suja and Joyce for being there. And to everyone else who have played a part in my life here in Kuala Lumpur.

To my labmates and friends in Zürich, Switzerland (HPH, Silvia, Sonia, Cyril, Miss X and the rest of the gang), thanks!

A special thanks to my bug brother (Chew Chieng), Van and Mel for being who you are and for helping me in so many ways.
Abbreviations

°C degree Celcius
% percent
ng nanogram
μg microgram
mg milligram
g gram
nm nanometer
mm millimeter
μl microlitre
ml millilitre
l litre
pmol picomole
μM micromole
mM millimolar
M molar
sec second
min minute
hr hour
bp base pair
kb kilobase pair
Mb megabase pair
MD megadalton
V voltage
v volume
v/v volume per unit volume
w/v weight per unit volume
U units of enzyme
OD optical density
UV ultraviolet
rpm revolutions per minute
e.g. example
λ lambda
Fig. figure
DI discriminatory index
IS insertion sequence
LB Luria Bertani
F fatal
NF non-fatal
PNG Papua New Guinea
MMR methyl-directed mismatch repair
SPI Salmonella pathogenicity island
W.H.O. World Health Organization
DNA deoxyribonucleic acid
RNA ribonucleic acid
dATP deoxyadenine triphosphate
dCTP deoxycytosine triphosphate
dGTP deoxyguanidine triphosphate
dTTP deoxythymidine triphosphate
dNTPs deoxyribonucleoside 5' triphosphate
spp. species
subsp. subspecies
S. Salmonella
RE restriction endonuclease
RFLP restriction fragment length polymorphism
PT phage type
MLEE multilocus enzyme electrophoresis
PCR polymerase chain reaction
RAPD random amplified polymorphic DNA
rep repetitive extragenic palindromic sequences
AFLP amplified fragment length polymorphism
SSCP single strand conformation polymorphism
PFGE pulsed-field gel electrophoresis
Abstract

Typhoid fever is a unique human septemic infection caused by *Salmonella typhi*. Typhoid fever is still an important public health problem in many developing countries. The continuing presence of the disease in endemic areas and emergence of multidrug-resistant strains in many developing countries as well as the increasing reports from developed countries has renewed the interest to better understand the epidemiology of typhoid fever and some aspects of its pathogenesis. Characterization of *S. typhi* strains in different epidemiological settings depends largely on the utility of highly precise molecular typing tools.

A convenient, versatile and safe method for preparing bacterial DNA for ribotyping, pulsed-field gel electrophoresis (PFGE), IS200 typing and gene hybridization of restricted DNA analysis has been described in this study.

PFGE analysis, IS200 typing, ribotyping, amplified fragment length polymorphism (AFLP) analysis and gene hybridization profile typing clearly demonstrated the high genetic diversity among geographical isolates of *S. typhi*, indicating the existence of multiple clones of *S. typhi* in different regions of the world. On the other hand, limited diversity was observed among *S. typhi* strains isolated from patients in Papua New Guinea (PNG) with fatal and non-fatal typhoid fever by the same typing methods. This points to the fact that *S. typhi* strains circulating in PNG were possibly derived from single or closely related clones.

PCR-ribotyping and PCR-restriction fragment length polymorphism (RFLP) were found to be of limited value in subtyping *S. typhi*.

AFLP analysis of the PNG *S. typhi* strains from fatal and non-fatal cases of typhoid fever showed no association between genotypes (molecular profiles) and virulence (the
Chapter 1 General introduction

1.1 The Genus *Salmonella*: Taxonomical and disease classification

1.2 Overview of *Salmonella typhi*

1.3 Methods of bacterial typing and identification

1.4.4 rbS gene

1.4.5 $ompC$, S1 and S2 genes

1.4.6 $groEL$ gene

1.4.7 *Salmonella* pathogenicity islands (SPI)

1.5 Molecular epidemiology and the purpose of bacterial typing

1.6 Variations in the bacterial genome

1.6.1 Point mutation

1.6.2 Chromosomal rearrangements

1.6.3 Horizontal gene transfer

1.7 General Objectives of the study

Chapter 2 Genomic DNA extraction

2.1 Introduction

2.2 Materials and Methods

2.2.1 Bacterial strains

2.2.2 Ribotyping

 2.2.2.1 Preparation of genomic DNA

 2.2.2.2 Preparation of the 16S rRNA gene probe

 2.2.2.3 Digestion with restriction endonucleases and electrophoresis

 2.2.2.4 Processing the gel
2.2.2.5 Capillary blotting 47
2.2.2.6 Processing the blot 48
2.2.2.7 Preparation of labeled probe and hybridization 48
2.2.2.8 Washing the membrane 49
2.2.2.9 Detection of the non-radioactive label 49

2.3 Results 50

2.4 Discussion 54

Chapter 3 Genomic diversity assessed by standard typing methods 57

3.1 Introduction 57

3.1.1 Objectives 60

3.2 Material and methods 60

3.2.1 Bacterial strains 60

3.2.2 Pulsed-field gel electrophoresis (PFGE) 63

3.2.2.1 Preparation of genomic DNA 63

3.2.2.2 Digestion with restriction enzyme 63

3.2.2.3 Gel electrophoresis 63

3.2.2.4 Data analysis 64

3.2.3 Ribotyping 65

3.2.3.1 Preparation of genomic DNA 65

3.2.3.2 Preparation of rRNA gene probe 65
3.2.3.3 Gel electrophoresis of digested *S. typhi* genomic DNA

3.2.3.4 Southern blotting and hybridization

3.2.3.5 Data analysis

3.2.4 IS200 typing

3.2.4.1 Preparation of genomic DNA

3.2.4.2 Preparation of the IS200 probe

3.2.4.2.1 Extraction of plasmid DNA

3.2.4.2.2 Gel electrophoresis of plasmid

3.2.4.2.3 Purification of IS200 probe

3.2.4.3 Gel electrophoresis of digested *S. typhi* genomic DNA

3.2.4.4 Southern blotting and hybridization

3.2.4.5 Data analysis

3.2.5 Polymerase chain reaction (PCR) analysis

3.2.5.1 Genomic DNA isolation

3.2.5.2 PCR-ribotyping

3.2.5.2.1 Primer selection

3.2.5.2.2 PCR reaction

3.2.5.2.3 PCR amplification

3.2.5.2.4 Detection of PCR product

3.2.5.3 PCR-RFLP

3.2.5.3.1 Primer selection

3.2.5.3.1.1 *viaB* gene

3.2.5.3.1.2 *groEL* gene

3.2.5.3.1.3 *ompC* gene
3.2.5.3.4 *rfbS* gene

3.2.5.3.1.5 16S rRNA gene

3.2.5.3.1.6 16S-23S rRNA spacer region

3.2.5.3.2 PCR reaction

3.2.5.3.2.1 *groEL* and 16S rRNA genes

3.2.5.3.2.2 *viaB* gene, *ompC* gene, *rfbS* gene and 16S-23S rRNA spacer region

3.2.5.3.3 PCR amplification

3.2.5.3.3.1 *viaB* gene

3.2.5.3.3.2 *groEL* gene

3.2.5.3.3.3 *ompC* gene

3.2.5.3.3.4 *rfbS* gene

3.2.5.3.5 16S rRNA gene

3.2.5.3.6 16S-23S rRNA spacer region

3.2.5.3.4 Restriction profiles

3.2.5.4 AFLP

3.2.5.4.1 DNA isolation

3.2.5.4.2 Restriction/Ligation

3.2.5.4.3 Preselective amplification

3.2.5.4.4 Electrophoresis

3.2.5.4.5 Data analysis

3.2.6 Discriminatory index analysis
3.3 Results

3.3.1 Phage typing 78
3.3.2 Antibiotics 78
3.3.3 Pulsed-field gel electrophoresis 78
3.3.4 Ribotyping 87
3.3.5 IS200 typing 92
3.3.6 PCR-ribotyping 96
3.3.7 PCR-RFLP 96
3.3.8 AFLP 102

3.4 Discussion 107

3.4.1 Assessment of genetic diversity by PFGE, ribotyping, IS200 typing, 109
PCR-ribotyping and PCR-RFLP
3.4.2 Molecular characterization by AFLP 116

3.5 Conclusion 121

Chapter 4 Genomic diversity assessed by hybridization with specific gene probes 123

4.1 Introduction 123

4.1.1 Objectives 126

4.2 Materials and methods 126

4.2.1 Bacterial strains 126
4.2.2 Gene probe typing 128
4.2.2.1 Preparation of gene probes based on PCR amplification

4.2.2.1.1 Primer selection

4.2.2.1.1.1 groEL gene

4.2.2.1.1.2 ompC gene

4.2.2.1.1.3 rfbS gene

4.2.2.1.1.4 fltC gene

4.2.2.1.1.5 invA gene

4.2.2.1.2 PCR reaction

4.2.2.1.2.1 groEL gene

4.2.2.1.2.2 ompC, rfbS, fltC and invA genes

4.2.2.1.3 PCR amplification

4.2.2.1.3.1 groEL gene

4.2.2.1.3.2 ompC gene

4.2.2.1.3.3 rfbS gene

4.2.2.1.3.4 fltC gene

4.2.2.1.3.5 invA gene

4.2.2.1.4 Gel electrophoresis and purification of gene probes

4.2.2.2 Preparation of gene probes from plasmids

4.2.2.2.1 Extraction of plasmid DNA

4.2.2.2.2 Restriction digest of plasmids and gel electrophoresis

4.2.2.2.3 Purification of gene probes

4.2.2.3 Gel electrophoresis of digested S. typhi genomic DNA
4.2.2.3.1 Genomic DNA digested with a frequent cutter (Restriction enzyme analysis gel) 132

4.2.2.3.2 Genomic DNA digested with a rare cutter (PFGE gel) 132

4.2.2.4 Southern blot and hybridization 134

4.2.2.4.1 Restriction enzyme analysis gels (REA gels) 134

4.2.2.4.2 Pulsed-field gel electrophoresis analysis (PFGE gels) 134

4.2.3 Movement of \textit{groEL} gene in the genome of \textit{S. typhi} due to IS200 elements 134

4.2.3.1 Genomic DNA digested with rare cutting enzyme (PFGE gel) 134

4.2.3.2 Preparation of gene probes 134

4.2.3.3 Southern blotting and hybridization 135

4.2.4 The detection of SPI-1 and SPI-2 in clinical and environmental \textit{S. typhi} isolates 135

4.2.4.1 Preparation of SPI-1 and SPI-2 gene probes 135

4.2.4.2 Gel electrophoresis of digested \textit{S. typhi} genomic DNA 135

4.2.4.2.1 Digestion with \textit{BamHI} 135

4.2.4.2.2 Digestion with \textit{EcoRI} 136

4.2.4.3 Southern blotting and hybridization 136

4.3 Results 136

4.3.1 Gene probe typing 136

4.3.1.1 Hybridization of restriction enzyme analysis (REA) gel 136

with various gene probes
4.3.1.2 Hybridization of PFGE gel with various gene probes

4.3.2 Localization of IS200 element in the vicinity of the groEL gene on XbaI restricted fragments

4.3.3 Detection of SPI-1 and SPI-2 in clinical and environmental Chilean *S. typhi* isolates

4.3.3.1 Genomic DNA digested with *BamHI*

4.3.3.2 Genomic DNA digested with *EcoRI*

4.4 Discussion

4.4.1 Gene probe typing

4.4.2 Plasticity of groEL gene in the genome

4.4.3 Detection of SPI-1 and SPI-2 in clinical and environmental *S. typhi* isolates

4.5 Conclusion

Chapter 5 Diversity at the base pair level

5.1 Introduction

5.1.1 Objectives

5.2 Materials and methods

5.2.1 Bacterial strains

5.2.2 PCR-SSCP analysis of *S. typhi* isolates

5.2.2.1 DNA isolation
5.2.2.2 Preparation of genes based on PCR amplification

5.2.2.2.1 Primer selection

5.2.2.2.2 PCR reaction

5.2.2.2.3 PCR amplification

5.2.2.3 Restriction of amplified genes

5.2.2.4 SSCP electrophoresis

5.2.2.5 Silver staining of SSCP gel

5.2.3 PCR-SSCP analysis of Salmonella serovars

5.2.3.1 DNA isolation

5.2.3.2 Amplification of groEL gene for SSCP analysis

5.2.3.3 Restriction of groEL gene

5.2.3.4 SSCP electrophoresis

5.2.3.5 Silver staining of SSCP gel

5.3 Results

5.3.1 PCR-SSCP analysis of S. typhi isolates

5.3.2 PCR-SSCP analysis of Salmonella serovars

5.4 Discussion

5.4.1 PCR-SSCP analysis of S. typhi isolates

5.4.2 PCR-SSCP analysis of Salmonella serovars

5.5 Conclusion

Chapter 6 General discussion and conclusions
List of figure

Fig 2.1:	Restriction endonuclease digest of *S. typhi* after digestion with *PstI* and autoradiogram of *PstI* restriction digests of *S. typhi* hybridized with 16S rRNA gene probe	52
Fig 2.2:	Restriction endonuclease digest of *B. pseudomallei* after digestion with *EcoRI* and autoradiogram of *EcoRI* restriction digests of *B. pseudomallei* hybridized with 16S rRNA gene probe	53
Fig 3.1:	Pulsed-field gel electrophoresis of *XbaI* digested *S. typhi* isolates representing all the PFGE profiles	83
Fig 3.2:	Reproducibility of *XbaI* restriction patterns of *S. typhi* isolates	84
Fig 3.3:	*XbaI* digested genomic DNA of serially passaged *S. typhi* isolates	85
Fig 3.4:	Matrix of F values and dendrogram for selected *S. typhi* strains representing all the different PFGE profiles	86
Fig 3.5:	Gene probes used in the study	89
Fig 3.6:	Ribotyping profiles in *S. typhi* and reproducibility of ribotypes. Genomic blot made with *PstI* and probed with a 1.5 kb 16S rRNA gene	90
Fig 3.7:	Matrix of F values and dendrogram for selected *S. typhi* strains representing all the different ribotyping profiles	91
Fig 3.8:	IS200 profiles in *S. typhi* genomic blot made with *HincII* and probed with a 2.3 kb DH5/ plZ45 plasmid vector containing a 300 bp IS200 internal probe	93
Fig 3.9:	Reproducibility and stability of IS200 profiles in *S. typhi*	94
Fig 3.10:	Matrix of F values and dendrogram for selected *S. typhi* strains representing all the different IS200 profiles	95
Fig 3.11:	PCR-ribotyping based DNA profiles of *S. typhi* isolates	100
Fig 3.12:	PCR-RFLP profiles of *S. typhi* isolates	101
Fig 3.13:	Dendrogram representing the genetic relationship among the 25 Papua New Guinea *S. typhi* strains and 5 geographic strains based on AFLP patterns	106
Fig 4.1:	Various gene probes used in the study	133
Fig 4.2: Characterization of *S. typhi* isolates by Southern blotting of *PstI* digested genomic DNA hybridized with *groEL*, *ompC*, *rfbS*, *ftiC*, *invA* and *ompS1* gene probes

Fig 4.3: The 7 distinct hybridization profiles obtained with *groEL* gene probes. Genomic DNA of *S. typhi* strains was digested with *XbaI* and hybridized to a 1.6 kb *groEL* fragment

Fig 4.4: *ompC*, *rfbS*, *ftiC*, *invA*, SPI-1, SPI-2, *ompS1* and *ompS2* gene hybridization profiles. Total genomic DNA of *S. typhi* isolates digested with *XbaI*

Fig 4.5: Localization of IS200 sequence in the vicinity of the *groEL* gene

Fig 4.6: Hybridization patterns obtained with SPI-1 gene probe. Total genomic DNA of clinical and environmental *S. typhi* isolates restricted with *EcoRI* and *BamHI*

Fig 4.7: Hybridization patterns obtained with SPI-2 gene probe. Total genomic DNA of clinical and environmental *S. typhi* isolates restricted with *EcoRI* and *BamHI*

Fig 5.1: RFLP and SSCP profiles of *groEL* and *rfbS* genes for *S. typhi* isolates

Fig 5.2: RFLP and SSCP profiles of *ompC*, *viaB* and *invA* genes for *S. typhi* isolates

Fig 5.3: RFLP and SSCP profiles of 16S-23S rRNA intergenic spacer region for *S. typhi* isolates

Fig 5.4: PCR amplification of the *groEL* gene for the *Salmonella* serovars studied

Fig 5.5: PCR-RFLP profiles of *groEL* gene after *HaeIII* digestion for the 41 strains from 10 *Salmonella* serovars

Fig 5.6: PCR-SSCP profiles of *groEL* gene after *HaeIII* digestion for the 41 strains from 10 *Salmonella* serovars
List of tables

Table 3.1: Geographic distribution of *S. typhi* isolates 62
Table 3.2: Genotypic characteristics of *S. typhi* strains 81
Table 3.3: PCR-RFLP and PCR-ribotyping characterization of *S. typhi* strain 98
Table 3.4: AFLP primer combination used in this study and the number of fragments 104
Table 3.5: Molecular characteristics of *S. typhi* strains isolated from different body sites 105
Table 4.1: Chilean clinical and environmental *S. typhi* used in the study 127
Table 4.2: Gene hybridization of *PstI* restricted DNA 138
Table 4.3: Gene hybridization of *XbaI* restricted DNA 145
Table 5.1: *Salmonella* serovars used in the study 170
Table 5.2: PCR-SSCP analysis of Papua New Guinea and geographic *S. typhi* isolates 176
Table 5.3: PCR-RFLP and PCR-SSCP analysis of *Salmonella* serovars 183