ACE 2340 INVC ACE 2340

Optimization of growth and immobilization of *Rhodopseudomonas palustris* strain B1 for the utilization of sago starch processing wastewater

by

Maheswari a/p Sathappan

Thesis submitted to the University of Malaya in partial fulfilment of the requirements for the Degree of Master of Biotechnology

Institute of Advanced Studies University of Malaya January 1997

MOHD SHARIFF MOHD ISA

REPROGRAFI ISTAKAAN UTAMA

NIVERSITI MALAYA

Dimikrofiskan pada. 23. 01. 17. No. Mikrofis.

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisors, Dr. S.Vikineswary, Prof. C.A. Sastry and Dr. Shaliza Ibrahim for their support and guidance during the course of my work. Dr. Vicky, thank you for your unfailing support and encouragement during tiring times. Prof. Sastry, many thanks for your invaluable advice and Dr. Shaliza, for your helpful comments that helped to shape my work.

I thank University of Malaya for the financial support and the Institute of Advanced Studies for the wonderful education I have had. I would also like to thank Dr. V.C. Chong for his help on the statistical aspects of my work and En. Mustafa, for being so patient with my graphs. My special acknowledgement also goes to Ms. Vijaya for her invaluable assistance with the SEM work. And thank you, Ms. Gnanamalar for being available whenever I needed you.

My heartfelt thanks to Nirmala, Sara, May Heng, Uma, Ananda, Dr. Ameera and the entire Mycology laboratory for helping me in their own ways during my study. Special thanks to Vijay, Anand and the many others, too numerous to be named, but will remain dear to my heart. They wanted me to succeed as much as I wanted to succeed. I shall always treasure the support and encouragement I received from my parents and my family. Special thanks to my husband who is my personal banker, doctor, etc. for being my pillar of strength. And dearest Vidya, for being the light of my life. And, thank you God.

ABSTRACT

An indigenous strain of the purple non-sulphur phototrophic bacterium, *Rhodopseudomonas palustris* strain B1 was optimized for growth and then immobilized in 4% (w/v) agar for the treatment of sago effluent.

Growth of *R. palustris* strain B1 was optimized in synthetic medium with starch as the primary electron donor. The optimal conditions for cultivation were at pH 7, temperature 25 °C, light intensity of 5 klux with a 5% 48 h old inoculum. Under these optimal conditions, maximum biomass of 8.1 g/L was obtained after 72 h under anaerobic-light culture conditions.

Immobilization of the cells with 4% agar was favoured over alginate and carrageenan. Entrapment with agar gave solid beads that were rigid and uniform in size. There was a 82% reduction in the Chemical Oxygen Demand (COD) of the sago effluent after 4 days of treatment under anaerobiclight conditions.

Further investigations showed that mixing and inoculum size did not significantly affect the COD removal. However, the immobilized cells retained 89% of their activity after the third consecutive recycling and 58% after the fifth consecutive recycling of fresh batches of sago effluent under anaerobiclight conditions.

ii

CONTENTS

ACKNOWLEGEMENTS	i
ABSTRACT	ii
CONTENTS .	iii
LIST OF TABLES	
LIST OF FIGURES	

LIST OF PLATES

LIST OF ABBREVIATIONS

CHAPTER ONE GENERAL INTRODUCTION

PHOTOTROPHIC BACTERIA			
PURPLE NON-SULPHUR BACTERIA (PNB)			
Classification and Growth			
Car	bon assimilation	7	
APPLICATION OF PHOTOTROPHIC BACTERIA IN BIOTECHNOLOGY Purification of wastewater and production of single cell			
protein (SCP)			
A	Pineapple wastes	14	
В	Soybean wastes	14	
С	Starch wastes	14	
	Cassava starch	14	
	Sago starch	15	

	D	Mandarin orange peel wastes	15	
	E	Seafood processing wastes	15	
	F	Cow dung and swine wastes	16	
IMM	OBIL	ZATION OF PNB	18	
	Who	le cell immobilization versus enzyme immobilization	18	
		obilized cell fermentations versus conventional entations	19	
	Cell	supports	21	
		N PRODUCTION FROM WASTEWATERS MOBILIZED PNB	22	AYA
CHA	PTEI	R 2		PERPUSTAKAAN UNIVERSITI MALAYA
CHA	RAC	TERIZATION AND OPTIMIZATION OF		RSIT
GRC	WTH	OF Rhodopseudomonas palustris STRAIN B1		NIVE
INTR	ODUC	TION	27	N D
MAT	ERIAL	S AND METHODS	28	AKAA
	Bacte	ria	28	'USU
	Inocu	lum Preparation	28	PERI
	Chara	acterization of Rhodopseudomonas palustris Strain B1	29	
		Morphological studies	29	
		Electron microscopy	30	
		Growth studies	30	
		Absorption spectra of intact cells	31	
		In saturated sucrose	31	
		In 25% bovine serum albumin (BSA)	33	

Strain B1 (a) Nutritional requirements (i) Utilization of complex organic compounds (ii) Utilization of simple organic compounds (iii) Effect of starch (iv) Growth factor requirements (b) Effects of physical parameters on cell growth Growth Profile of Strain B1 and ATCC 17001 Under Optimized Conditions Statistical Analysis RESULTS AND DISCUSSIONS General morphological and cultural characteristics	34 34 34
 (i) Utilization of complex organic compounds (ii) Utilization of simple organic compounds (iii) Effect of starch (iv) Growth factor requirements (b) Effects of physical parameters on cell growth Growth Profile of Strain B1 and ATCC 17001 Under Optimized Conditions Statistical Analysis RESULTS AND DISCUSSIONS 	34
 (ii) Utilization of simple organic compounds (iii) Effect of starch (iv) Growth factor requirements (b) Effects of physical parameters on cell growth Growth Profile of Strain B1 and ATCC 17001 Under Optimized Conditions Statistical Analysis RESULTS AND DISCUSSIONS 	-
 (iii) Effect of starch (iv) Growth factor requirements (b) Effects of physical parameters on cell growth Growth Profile of Strain B1 and ATCC 17001 Under Optimized Conditions Statistical Analysis RESULTS AND DISCUSSIONS 	
 (iv) Growth factor requirements (b) Effects of physical parameters on cell growth Growth Profile of Strain B1 and ATCC 17001 Under Optimized Conditions Statistical Analysis RESULTS AND DISCUSSIONS 	34
(b) Effects of physical parameters on cell growth Growth Profile of Strain B1 and ATCC 17001 Under Optimized Conditions Statistical Analysis RESULTS AND DISCUSSIONS	35
Growth Profile of Strain B1 and ATCC 17001 Under Optimized Conditions Statistical Analysis RESULTS AND DISCUSSIONS	35
Optimized Conditions Statistical Analysis RESULTS AND DISCUSSIONS	36
RESULTS AND DISCUSSIONS	37
	38
General morphological and cultural characteristics	38
	38
Growth Studies	44
Absorption Spectrum of Intact Cells	48
In saturated sucrose	48
In 25% bovine serum albumin	50
A Comparison Between <i>R. palustris</i> Strain B1 and <i>R. palustris</i> ATCC 17001 Based on Morphology, Growth Studies and	
Photopigments	53
Utilization of Carbon Sources and Electron Donors	54
Growth on Starch	60
Physiological and Biochemical Characteristics	63
Effect of Temperature on Growth	65
Effect of pH on Growth	67
Effect of Light Intensity on Growth	

Effect of Salinity on Growth	70
Effects of Inoculum Size and Age on Growth Rates	71
Comparison of Growth of R. palustris Strain B1 under	
Optimized Conditions	73
Comparison of Growth of R. palustris ATCC 17001 under	
Optimized Conditions	75

77

CHAPTER 3

INTRODUCTION

IMMOBILIZATION OF *Rhodopseudomonas palustris* STRAIN BI FOR THE POLLUTION REDUCTION OF SAGO EFFLUENT

MATERIALS AND METHODS	78			
Pre-culture preparation Cell mass determination				
(i) Calcium-alginate method	79			
(ii) Carrageenan method	80			
(iii) Agar method	80			
Properties of the Immobilized Cells	81			
Electron microscopic studies	81			
Immobilized Phototrophic Cells for the Treatment of				
Sago Effluent	81			
Substrate	81			
Reduction in Chemical Oxygen Demand of Unsettled				
and Settled Sago Effluent	82			

Effect of sago effluent concentration on COD reduction	83
Effect of mixing on COD reduction	83
Effect of inoculum on COD reduction	84
Reusability of beads	84
Statistical Analysis	85
RESULTS AND DISCUSSIONS	85
Immobilization of Rhodopseudomonas palustris Strain B1	85
In calcium- alginate	85
In carrageenan	86
In agar	86
SEM observation	88
The Chemical Oxygen Demand (COD) removal of sago effluent	93
Effect of sago effluent concentration on COD reduction	98
Effect of mixing on COD reduction	100
Effect of inoculum concentration on COD reduction	103
Reusability of immobilized cells of <i>R. palustris</i> strain B1	106
CHAPTER FOUR	
SUMMARY AND CONCLUSION	109
Description of Rhodopseudomonas palustris Strain B1	111
FUTURE RESEARCH WORK	115
Nonsterile Culture System	115
Optimization of Temperature and pH	115
Optimizing the Mechanical Strength of the Immobilized Cell	116

/Contents/

Optimizing the Production of Hydrogen			117
CONCLUSION	s		118
REFERENCES			120
APPENDIX A	:	ANALYTICAL METHODS	142
APPENDIX B	:	MEDIA, REAGENTS AND BUFFERS	149
APPENDIX C	:	EXPERIMENTAL AND STATISTICAL DATA	155

LIST OF TABLES

Table			Page
1	:	Classification of purple non-sulphur phototrophic bacteria	5
2	:	Composition of phototrophic bacteria, green algae and yeast cells ($g/100$ g dry weight)	13
3	:	Growth yields and COD removal of PNB from the various wastes	17
4	:	Absorbance values corresponding to the wavelengths of cell suspensions of R . <i>palustris</i> stain B1 and ATCC 17001 in saturated sucrose	49
5	:	Characteristic absoprtion maxima of bacteriochlorophylls in living cells	49
6	:	Typical carotenoids and their approximate absorption maxima in living cells	50
7	:	Absorbance values corresponding to the wavelengths of cell suspensions of R palustris strain B1 and ATCC 17001 in 25% BSA	52
8	:	Major carotenoid groups of anoxygenic phototrophic bacteria	52
9	:	Characteristics of Rhodopseudomonas palustris strain B1	54
10	:	Utilization of single organic substrates by <i>R. palustris</i> strain B1 and ATCC 17001 under anerobic-light conditions after 96h at $30^{\circ}\pm 2$ °C and 3 klux	56
11	:	Amylopectin content of starches	63
12	:	Photosynthetic growth of <i>R. palustris</i> strain B1 and ATCC 17001 in GM medium with specific growth factors omitted after 72h at $30^{\circ} \pm 2^{\circ}$ C and 3 klux	64

- 13 : Optical density at 660 nm on the growth of *R. palustris* strain
 64 B1 and ATCC 17001 in GM medium with *p*-aminobenzoic acid after 72 h at 30^o ± 2 ^oC and 3 klux
- 14 : Effect of inoculum size on the specific growth rates of *R. palustris* strain B1 and ATCC 17001 in GM medium at 30°±2°C and 3 klux
- 15 : Effect of inoculum age on specific growth rates of *R. palustris* strain B1 and ATCC 17001 in GM medium at 30° ± 2° C and 3 klux
- 16 : Comparison of growth of *R. palustris* strain B1 under 74 optimized conditions after 72h incubation
- 17 : Growth of *R. palustris* ATCC 17001 in GM medium and 75 GM-salt medium after 72h incubation
- 18 : Optimal growth conditions for R. palustris strain B1 and ATCC 17001
- 19 : Effect of sago effluent concentration on COD removal by agar-immobilized *R. palustris* strain B1 after 72h at 30° ± 2° C and 4 klux
- 20 : Effect of mixing on the COD removal of sago effluent by agar-immobilized *R. palustris* strain B1 at 30° ± 2° C and 4 klux
- 21 : Effect of inoculum concentration on COD removal of sago effluent by agar-immobilized *R. palustris* strain B1 after 72h at 30°± 2°C and 4 klux
- 22 : The reusability of the agar-immobilized *R. palustris* strain B1 106 cells in sago effluent at $30^{\circ} \pm 2^{\circ}$ C and 4 klux

LIST OF FIGURES

Figure			Page
1	:	A schematic diagram to show the functions of the three components of a photosynthetic apparatus in PNB	2
2	;	Absorption spectrum of intact cells	32
3	;	Determination of <i>in vivo</i> spectrum of photosynthetic pigments	33
4A	:	The growth profile of <i>R. palustris</i> strain B1 grown in GM medium under anaerobic-light and aerobic-dark conditions	45
4B	:	The cell dry weight over time of <i>R. palustris</i> strain B1 grown in GM medium under anaerobic-light and aerobic-dark conditions	45
5A		The growth profile of <i>R. palustris</i> ATCC 17001 grown in GM medium under anaerobic-light and aerobic-dark conditions	46
5B		The cell dry weight over time of <i>R. palustris</i> ATCC 17001 grown in GM medium under anaerobic-light and aerobic-dark conditions	46
6	:	Absorption spectrum of cell suspensions of <i>R. palustris</i> strain B1 and ATCC 17001 in saturated sucrose	48
7	:	Absorption spectrum of <i>R. palustris</i> strain B1 and ATCC 17001 cells suspended in 25% BSA	51
8	:	The effect of various carbon sources on growth of R palustris strain B1 and ATCC 17001 in modified GM medium after 72h at $30^{\circ}\pm2^{\circ}$ C and 3 klux	59
9	:	The growth of <i>R. palustris</i> strain B1 on the various types of starch in modified GM medium after 72h at $30^{\circ} \pm 2^{\circ}$ C and 3 klux	61

LIST OF FIGURES

Figure			Page
1	:	A schematic diagram to show the functions of the three components of a photosynthetic apparatus in PNB	2
2	:	Absorption spectrum of intact cells	32
3	:	Determination of <i>in vivo</i> spectrum of photosynthetic pigments	33
4A	:	The growth profile of <i>R. palustris</i> strain B1 grown in GM medium under anaerobic-light and aerobic-dark conditions	45
4B	:	The cell dry weight over time of <i>R. palustris</i> strain B1 grown in GM medium under anaerobic-light and aerobic-dark conditions	45
5A		The growth profile of <i>R. palustris</i> ATCC 17001 grown in GM medium under anaerobic-light and aerobic-dark conditions	46
5B		The cell dry weight over time of <i>R. palustris</i> ATCC 17001 grown in GM medium under anaerobic-light and aerobic-dark conditions	46
6	:	Absorption spectrum of cell suspensions of <i>R. palustris</i> strain B1 and ATCC 17001 in saturated sucrose	48
7	:	Absorption spectrum of <i>R. palustris</i> strain B1 and ATCC 17001 cells suspended in 25% BSA	51
8	:	The effect of various carbon sources on growth of R palustris strain B1 and ATCC 17001 in modified GM medium after 72h at $30^{\circ}\pm2^{\circ}$ C and 3 klux	59
9	:	The growth of <i>R. palustris</i> strain B1 on the various types of starch in modified GM medium after 72h at $30^{\circ} \pm 2^{\circ}$ C and 3 klux	61

10	:	The effect of potato starch concentrations on the growth of <i>R. palustris</i> strain B1 in modified GM medium after 72h at $30^{\circ} \pm 2^{\circ}$ C and 3 klux	61
11	:	The effect of temperature tolerance of <i>R. palustris</i> strain B1 and ATCC 17001 in GM medium after 72h at 3 klux	66
12	:	The effect of initial pH on the growth of <i>R. palustris</i> strain B1 and ATCC 17001 in GM medium after 72h at $30^{\circ} \pm 2^{\circ}$ C and 3 klux_	67
13	:	The effect of light intensity on growth of <i>R. palustris</i> strain B1 and ATCC 17001 in GM medium after 72h at $30^{\circ} \pm 2^{\circ}$ C	68
14	:	The effect of salinity on growth of <i>R</i> palustris strain B1 and ATCC 17001 in GM medium after 72h at $30^{\circ} \pm 2^{\circ}$ C and 3 klux	70
15A	:	COD removal of settled sago effluent by free and agar- entrapped cells of <i>R. palustris</i> strain B1	96
15B	:	COD removal of unsettled sago effluent by free and agar- entrapped cells of <i>R. palustris</i> strain B1	97

LIST OF PLATES

Plate			Page
1	:	Purple non-sulphur bacteria grown in GM medium under an aerobic-light conditions at $30^\circ\pm2^\circ$ C and 3 klux	30
2	:	<i>Rhodopseudomonas palustris</i> (a) ATCC 17001 and (b) strain B1 grown photosynthetically in GM medium	40
3A	:	Pure culture of R. palustris strain B1 on GM medium agar plate	41
3B	:	Pure culture of <i>R. palustris</i> ATCC 17001 on GM medium agar plate	41
4A	:	Phase contrast photomicrograph of crystal violet stained <i>R. palustris</i> strain B1 (x1000)	42
4B	:	Phase contrast photomicrograph of crystal violet stained <i>R. palustris</i> ATCC 17001 (x1000)	42
5A	:	Electron micrograph of <i>R. palustris</i> ATCC 17001 showing the characteristic dumbell-shaped cells forming rosettes and polar budding	43
5B	:	Electron micrograph of R . palustris strain B1 showing ridges across the cell length	43
6	:	Growth of R. palustris corresponding to Table 10	57
7	:	Immobilized R. palustris strain B1 in agar after 96 h at 30° \pm 2° C and 4 klux	90
8A	:	Scanning electron micrographs of immobilized cells of <i>R. palustris</i> strain B1 in agar after 48h at $30^{\circ} \pm 2^{\circ}$ C and 4 klux (whole bead)	91
8B	:	Rupture in the gel film - evidence of budding after 72h at $30^{\rm o}\pm 2^{\rm o}C$ and 4 klux (whole bead)	91
8C	:	Cells inside the agar bead after 72 h at $30^o \pm 2^o C$ and 4 klux	92
9	:	(a) Sago effluent inoculated with (b) free and (c) agar-entrapped cells of <i>R. palustris</i> strain B1 after 96 h at $30^{\circ} \pm 2^{\circ}$ C and 4 klux	97

LIST OF ABBREVIATIONS

%	percentage
μg	microgram
μL	microliter
v/v	volume per volume
w/v	weight per volume
Abs •	Absorbance
ANOVA	Analysis of variance
ADP	Adenosine DiPhosphate
ATCC	American Type Culture Collection
ATP	Adenosine TriPhosphate
BSA	Bovine Serum Albumine
COD	Chemical Oxygen Demand
DNA	Deoxyribonucleic Acid
FAS	Ferrous Ammonium Sulfate
fig.	figure
g	gram
GM	Glutamate-malate
h	hour
HSD	honestly significant difference
kg	kilogram
klux	kilolux
L	Litre
М	Molarity
m	metre
mg	milligram
min	minute
mL	milliliter
nm	nanometer
OD	optical density

/Contents/

PABA	<i>p</i> - aminobenzoic acid
PNB	Purple Non-sulphur Phototrophic Bacteria
rpm	revolution per minute
SCP	Single Cell Protein
W	Watt
wt	weight