CONTENTS

		PAGE
ACKNOWLE	GEMENTS	i
ABSTRACT		i
CONTENTS		i
LIST OF TAE	BLES	
LIST OF FIG	URES	
LIST OF PLA	TES	
LIST OF ABB	REVIATIONS	
CHAPTER	RONE	
GENERAI	LINTRODUCTION	
PHOTOTROP	PHIC BACTERIA	1
PURPLE NON	I-SULPHUR BACTERIA (PNB)	4
Classifi	cation and Growth	4
Carbon	assimilation	7
APPLICATIO BIOTECHNO	N OF PHOTOTROPHIC BACTERIA IN LOGY	1:
Purifica protein	tion of wastewater and production of single cell (SCP)	12
A I	Pineapple wastes	14
B S	Toybean wastes	14
c s	tarch wastes	14
	Cassava starch	14
	Sago starch	15

	D	Mandarin orange peel wastes	15
	E	Seafood processing wastes	15
	F	Cow dung and swine wastes	16
IMMC	BILIZ	ATION OF PNB	18
	Whole	cell immobilization versus enzyme immobilization	18
		bilized cell fermentations versus conventional natations	19
	Cell su	pports	21
		PRODUCTION FROM WASTEWATERS OBILIZED PNB	22
СНАН	PTER	2	
СНАБ	RACT	ERIZATION AND OPTIMIZATION OF	
GROV	WTH (OF Rhodopseudomonas palustris STRAIN B1	
INTRO	DUCT	TION	27
MATE	RIALS	AND METHODS	28
1	Bacteri	a	28
1	Inoculu	ım Preparation	28
(Charac	terization of Rhodopseudomonas palustris Strain B1	29
	i	Morphological studies	29
	i	Electron microscopy	30
		Growth studies	30
	,	Absorption spectra of intact cells	31
		In saturated sucrose	31
		In 25% having serum albumin (RSA)	22

Optimization of Growth of Rhodopseudomonas palustris	
Strain B1	3
(a) Nutritional requirements	3
(i) Utilization of complex organic compounds	3
(ii) Utilization of simple organic compounds	3
(iii) Effect of starch	3
(iv) Growth factor requirements	3
(b) Effects of physical parameters on cell growth	3
Growth Profile of Strain B1 and ATCC 17001 Under Optimized Conditions	3
Statistical Analysis	3
RESULTS AND DISCUSSIONS	3
General morphological and cultural characteristics	3
Growth Studies	4
Absorption Spectrum of Intact Cells	4
In saturated sucrose	48
In 25% bovine serum albumin	50
A Comparison Between R. palustris Strain B1 and R. palustris ATCC 17001 Based on Morphology, Growth Studies and Photopigments	53
Utilization of Carbon Sources and Electron Donors	54
Growth on Starch	60
Physiological and Biochemical Characteristics	63
Effect of Temperature on Growth	65
Effect of pH on Growth	67
Effect of Light Intensity on Growth	68

Effect of Salinity on Growth	70
Effects of Inoculum Size and Age on Growth Rates	71
Comparison of Growth of R. palustris Strain B1 under	
Optimized Conditions	73
Comparison of Growth of R. palustris ATCC 17001 under	
Optimized Conditions	75
CHAPTER 3	
IMMOBILIZATION OF Rhodopseudomonas palustris	
STRAIN B1 FOR THE POLLUTION REDUCTION	
OF SAGO EFFLUENT	
INTRODUCTION	77
MATERIALS AND METHODS	78
Pre-culture preparation	78
Cell mass determination	79
Immobilization of cells	79
(i) Calcium-alginate method	79
(ii) Carrageenan method	80
(iii) Agar method	80
Properties of the Immobilized Cells	81
Electron microscopic studies	81
Immobilized Phototrophic Cells for the Treatment of Sago Effluent	81
Substrate	81
Reduction in Chemical Oxygen Demand of Unsettled and Settled Sago Effluent	82

Effect of sago effluent concentration on COD reduction	83
Effect of mixing on COD reduction	83
Effect of inoculum on COD reduction	84
Reusability of beads	84
Statistical Analysis	85
RESULTS AND DISCUSSIONS	85
Immobilization of Rhodopseudomonas palustris Strain B1	85
In calcium- alginate	85
In carrageenan	86
In agar	86
SEM observation	88
The Chemical Oxygen Demand (COD) removal of sago effluent	93
Effect of sago effluent concentration on COD reduction	98
Effect of mixing on COD reduction	100
Effect of inoculum concentration on COD reduction	103
Reusability of immobilized cells of R. palustris strain B1	106
CHAPTER FOUR	
SUMMARY AND CONCLUSION	109
Description of Rhodopseudomonas palustris Strain B1	111
FUTURE RESEARCH WORK	115
Nonsterile Culture System	115
Optimization of Temperature and pH	115
Ontimizing the Machanical Strongth of the Immebilized Call	116

Optimizing the Production of Hydrogen			117
CONCLUSIONS			118
REFERENCES			120
APPENDIX A	:	ANALYTICAL METHODS	142
APPENDIX B	:	MEDIA, REAGENTS AND BUFFERS	149
APPENDIX C	:	EXPERIMENTAL AND STATISTICAL DATA	155