RECOVERY OF NICKEL AND CHROMIUM FROM WASTEWATER BY MEMBRANE PROCESSES

BY

KUMAR S/O M. ANNAVOO

THESIS SUBMITTED TO THE INSTITUTE OF POSTGRADUATE STUDIES AND RESEARCH, UNIVERSITY OF MALAYA, 50603 KUALA LUMPUR IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF BIOTECHNOLOGY

APRIL 1998
ACKNOWLEDGMENTS

I wish to express my sincere gratitude to my supervisor, Assoc. Prof. Dr. Bhaskar Sen Gupta for his guidance and helpful comments, suggestions, criticisms and encouragement. I would like to thank Prof. Mohd. Ali Hashim for his invaluable advice.

I thank En. Osman, En. Jasmi and Dr. Ramakanth for their help in this Project.

Thanks to my coursemates, Annie who was always there; Nesa for her support.

Lastly, I would like to thank my parents, brother Viswa, Goki, Uma and friends for their moral support.
ABSTRACT

In this study recovery of heavy metals (Ni and Cr) and water from wastewater have been explored using the reverse osmosis process. The relationship between permeate flow rate and trans-membrane pressure drop (TMP) for different feed concentrations were derived. The effect of TMP on concentration of heavy metals in the permeate was also studied. Recovery of heavy metals and high quality process water were two main applications studied here using pilot plant membrane unit. A feasibility of reclaiming high quality process water from the effluent was carried out by a comparative study between RO membrane process and deionization process for small and medium scale electroplating industries. A modification of surface force pore-flow (SFPF) model was also included as a part of this study. Experimental data for the modelling work were gathered by using aqueous sodium chloride solutions. The verification of the SFPF model for the aqueous NiSO₄, NiCl₂ and CrCl₃ solutions was not included in the scope of this work.
ABSTRAK

CONTENTS

ACKNOWLEDGMENTS ii

ABSTRACT iii

ABSTRAK iv

CONTENTS v

LIST OF TABLES xi

LIST OF FIGURES xiii

APPENDIX xv

Chapter 1: Introduction 1

1.1 Significance of Research 1

1.2 Industrial Wastewater and Heavy Metal Pollution 2

1.3 Various Techniques of Treatment Technology 4

1.3.1 Chemical Precipitation 4

1.3.2 Ion Exchange 5

1.3.3 Evaporation 6

1.4 Membrane Separation 6

1.4.1 Reverse osmosis 9

1.5 Comparison of Different Separation Technologies 11
Chapter 2: Literature Review

2.1 Nickel

2.1.1 Uses of Nickel

2.1.2 Nickel in Vegetation

2.1.3 Distribution and Behaviour of Nickel in the Aquatic Environment

2.1.3.1 Nickel in Streams and Rivers

2.1.3.2 Nickel in Lakes

2.1.3.3 Nickel in Estuaries

2.1.3.4 Nickel in Wastewater

2.1.4 Toxicity of Nickel

2.1.4.1 Effect of Nickel on Marine Organisms

2.1.4.2 Effect of Nickel on Freshwater Organisms

2.1.5 The Effect of Nickel on Human Health

2.1.6 Recommended Environmental Quality Standards (EQS)

2.2 Chromium

2.2.1 Chromium in Vegetation
2.2.2 Distribution and Behaviour of Cr in Aquatic Environment 36
 2.2.2.1 Chromium in Streams and Rivers 36
 2.2.2.2 Chromium in Wastewater 38
2.2.3 Toxicity of Chromium 38
 2.2.3.1 Effect of Chromium on Marine Organisms 38
 2.2.3.2 Effect of Chromium on Freshwater Organisms 42
2.2.4 The Effect of Chromium on Human Health 46
2.2.5 Recommended Environmental Quality Standards (EQS) 49

Chapter 3: Materials and Methods 51
 3.1 Membrane Separation 51
 3.1.1 Chemicals 51
 3.1.2 Preparation of Metal Solutions 51
 3.1.3 Membrane Unit 52
 3.1.4 Reverse Osmosis Membrane Module 55
 3.2 Metal Analysis 56
 3.2.1 Chemicals 56
3.2.2 Inductively Coupled Plasma

3.2.3 Flame Photometer

Chapter 4: Results and Discussions

4.1 Separation of Nickel (II) Sulfate

4.1.1 NiSO₄: Trans-membrane Pressure Drop and Permeate Flow Rate

4.1.2 NiSO₄: Trans-membrane Pressure Drop and Ni in Permeate

4.1.3 NiSO₄: Transmembrane Pressure Drop and Ni in Concentrate

4.1.4 NiSO₄: Flow Rate and Ni Concentration in Permeate

4.2 Separation of Nickel (II) Chloride

4.2.1 NiCl₂: Trans-membrane Pressure Drop and Permeate Flow Rate

4.2.2 NiCl₂: Trans-membrane Pressure Drop and Ni in Permeate

4.2.3 NiCl₂: Trans-membrane Pressure Drop and Ni in Concentrate
4.2.4 \(\text{NiCl}_2 \): Flow Rate and Ni Concentration in Permeate

4.3 Separation of Chromium (III) Chloride

4.3.1 \(\text{CrCl}_3 \): Transmembrane Pressure Drop and Permeate Flow Rate

4.3.2 \(\text{CrCl}_3 \): Trans-membrane Pressure Drop and Cr in Permeate

4.3.3 \(\text{CrCl}_3 \): Trans-membrane Pressure Drop and Cr in Concentrate

4.3.4 \(\text{CrCl}_3 \): Flow Rate and Cr Concentration in Permeate

4.4 Conclusion

Chapter 5: A Feasibility Study of Membrane Process

5.1 A Comparative Study on RO Membrane Process and Deionization

5.1.1 An Automatic Water Demineralizer/Deionizer

5.1.2 Reverse Osmosis Membrane Unit

5.2 Conclusion
Chapter 6: Modelling - Surface Force Pore-Flow Model

6.1 Introduction 105

6.2 The Simulation Scheme 108

6.3 Results and Discussions 115

6.4 Conclusion 118

REFERENCES 120
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1: Metal finishing operations and typical waste</td>
<td>3</td>
</tr>
<tr>
<td>Table 1.2: Characteristics of metal finishing wastewater</td>
<td>3</td>
</tr>
<tr>
<td>Table 1.3: Membrane separation and applications</td>
<td>8</td>
</tr>
<tr>
<td>Table 1.4: Evaluation of three different separation technologies</td>
<td>12</td>
</tr>
<tr>
<td>Table 2.1: Nickel in river water - 1995</td>
<td>20</td>
</tr>
<tr>
<td>Table 2.2: Forms of nickel in the major rivers of the world</td>
<td>21</td>
</tr>
<tr>
<td>Table 2.3: Nickel in various wastewater</td>
<td>23</td>
</tr>
<tr>
<td>Table 2.4: Acute toxicity (96-h LC50) of Nickel (as chloride) to marine fauna</td>
<td>25</td>
</tr>
<tr>
<td>Table 2.5: Possible relation of cancer and nickel compounds</td>
<td>30</td>
</tr>
<tr>
<td>Table 2.6: Environmental standard quality by WRC, 1984</td>
<td>32</td>
</tr>
<tr>
<td>Table 2.7: Some uses of chemicals containing Cr</td>
<td>34</td>
</tr>
<tr>
<td>Table 2.8: Chromium in river water - 1995</td>
<td>37</td>
</tr>
<tr>
<td>Table 2.9: Acute toxicity (LC50) for hexavalent chromium</td>
<td>40</td>
</tr>
<tr>
<td>Table 2.10: Acute toxicity (96-h LC50) for trivalent chromium</td>
<td>41</td>
</tr>
<tr>
<td>Table 2.11: Acute toxicity of hexavalent chromium to freshwater fish</td>
<td>43</td>
</tr>
<tr>
<td>Table 2.12: Acute toxicity of trivalent chromium to freshwater fish</td>
<td>44</td>
</tr>
<tr>
<td>Table 2.13: Acute values (96-h LC50) for chromium</td>
<td>45</td>
</tr>
</tbody>
</table>
Table 2.14: Plant values for chromium (EPA, 1980)

Table 2.15: Environmental standard quality by WRC, 1984

Table 3.1: Detection limits for the Baird ICP Optical Emission Spectrometer

Table 6.1: The physico-chemical parameters used in this work

Table 6.2: f values for experimental (feed concentration 30 mg/L) and calculated data

Table 6.3: f values for experimental (feed concentration 50 mg/L) and calculated data

Table 6.4: f values for experimental (feed concentration 80 mg/L) and calculated data
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1: Application size range of membrane filtration processes</td>
<td>9</td>
</tr>
<tr>
<td>Figure 3.1: Schematic diagram of reverse osmosis system</td>
<td>53</td>
</tr>
<tr>
<td>Figure 3.2: The construction of the membrane module</td>
<td>55</td>
</tr>
<tr>
<td>Figure 3.3: Schematic cross-section of a thin film composite membrane</td>
<td>56</td>
</tr>
<tr>
<td>Figure 4.1.1: Relationship between trans-membrane pressure drop (TMP) and permeate flow rate for NiSO₄</td>
<td>65</td>
</tr>
<tr>
<td>Figure 4.1.2: Relationship between trans-membrane pressure drop (TMP) and Ni permeate for NiSO₄</td>
<td>68</td>
</tr>
<tr>
<td>Figure 4.1.3: Relationship between trans-membrane pressure drop (TMP) and Ni in concentrate for NiSO₄</td>
<td>71</td>
</tr>
<tr>
<td>Figure 4.1.4: Relationship between flow rate and Ni in permeate for NiSO₄</td>
<td>74</td>
</tr>
<tr>
<td>Figure 4.2.1: Relationship between trans-membrane pressure drop (TMP) and permeate flow rate for NiCl₂</td>
<td>77</td>
</tr>
<tr>
<td>Figure 4.2.2: Relationship between trans-membrane pressure drop (TMP) and Ni in permeate for NiCl₂</td>
<td>80</td>
</tr>
</tbody>
</table>
Figure 4.2.3: Relationship between trans-membrane pressure drop and Ni in concentrate for NiCl₂

Figure 4.2.4: Relationship between flow rate and Ni in permeate for NiCl₂

Figure 4.3.1: Relationship between trans-membrane pressure drop and permeate flow rate for CrCl₃

Figure 4.3.2: Relationship between trans-membrane pressure drop and Cr in permeate for CrCl₃

Figure 4.3.3: Relationship between trans-membrane pressure drop and Cr in concentrate CrCl₃

Figure 4.3.4: Relationship between flow rate and Cr in permeate for CrCl₃
APPENDIX

Appendix: Environmental Quality Act 1974, Environmental Quality (Sewage and Industrial Effluents) Regulations 1979