ANALYSING RANDOM ACCESS MEMORY CHIP YIELD PERFORMANCE

BY

KAM CHOY SAR (EGE97009)

SUBMITTED TO THE FACULTY OF ECONOMICS AND ADMINISTRATION, UNIVERSITY OF MALAYA IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF APPLIED STATISTICS

MAY 2000

ACKNOWLEDGMENTS

First of all, I would like to thank my supervisor, Professor Shyamala Nagaraj, for introducing me to a field of research, which allowed me to look at engineering from a broad perspective. Her enlightening guidance, kind help, insightful comments, and encouragement are instrumental for the completion of this study.

I would like to thank Encik Azid, who in spite of his busy schedule had time to provide comments on and critique the technical contents of this research. I am very thankful to Encik Agust Salim, Chris Leigh, Joe Sigmund and David Chin, they have been instrumental in providing the necessary technical data and technical input without which this research would have been incomplete. I learned a lot from my present colleagues. I am thankful to them for their time and provide criticisms in my research paper.

And finally I would like to thank my parents, sisters, colleagues and friends for their encouragement, valuable help and supports.

ABSTRACT

Despite advances in integrated circuits (IC) equipment and fabrication techniques, there still exist random fluctuations or statistical disturbances in any IC manufacturing facility, which can adversely affect the production yield. Actually devices and circuits are being designed with increasingly tighter parameter and performance margins. As a result, chip performance becomes even more sensitive to the statistical variations, and this may result in low production yield.

One of the significant detractors of cost in a manufacturing line is yield loss due to contamination and the time required to increase the yield to profitable levels. Yield loss in a manufacturing line is determined by the various attributes of fabrication, product, testing and failure analysis. This research attempts to determine whether there are any significant differences in the average yield by tester, by day and by test insert at each different level of temperature i.e. TOS, TLO and THI test insert. This paper also attempts to examine the yield across the various tests and investigated the major defect type that contributed to yield loss.

Table of Contents

Acknowledgment	i
Abstract	ĥ
List of Figures	vi
List of Tables	vii
Acronyms	viii

CHAPTER 1 OVERVIEW

1.1	Introduction	2
1.2	Objectives of the Study	3
1.3	Profile of Company A	4
1.4	Semiconductor Industry	5
	1.4.1 Definition of the Industry	5
	1.4.2 Major Types of Semiconductor Products and Their Usage	5
1.5	Organization of the Report	9

11

13

14

17

19

2()

20

21

21

22

23

24

CHAPTER 2

GENERAL MANUFACTURING PROCESS FLOW 2.1 Introduction 2.2 Wafer Fabrication 2.2.1 Wafer Fab Process 2.2.2 Wafer Probe 2.2.3 Packaging 2.3 Assembly Processes 2.3.1 Die-preparation 2.3.2 Wafer Saw 2.3.3 UV Irradiation 2.3.4 Die Bond 2.3.5 Wire Bond 2.3.6 UVO Clean 227

	2.3.7	Mold	24
	2.3.8	Solder Ball Attach and Laser Mark	25
	2.3.9	Final Outgoing Inspection	26
2.4	Final	Test Processes	26

	2.4.1	Burn-in TOS, TLO and THI	27 28
		Combination and Mark	32
		QC Inline	34
2.5 Final Stages		35	
	2.5.1	Ball Scan/Inspection	35
	2.5.2	Packing	35
2.6	Summ	hary	36

CHAPTER 3

LITERATURE REVIEW			
3.1	Research Done At Wafer Fabrication Process	38	
3.2	Research Done At Assembly Process	43	
3.3	Research Done At Test Process	45	
3.4	Summary	48	

CHAPTER 4

TEST DEFECT AND METHODOLOGY

4.1	Produc	Product Background 5		
4.2	Туре с	of Defects and Test to Detect Defects	51	
	4.2.1	Margins or Pattern Failure	51	
	4.2.2	Parametric Failure	52	
	4.2.3	Nominal March Failure	53	
	4.2.4	Shorts and Opens Failure	54	
4.3	Metho	Methodology		
	4.3.1	Box and Whisker Plots	55	
	4.3.2	Homogeneity of Variance Test	56	
	4.3.3	Analysis of Variance (ANOVA)	56	
	4.3.4	Assumption of the Analysis of Variance	58	
	4.3.5	Non-parametric Methods in the Analysis of Variance:		
		Kruskal-Wallis Test	59	
	4.3.6	Multiple Comparisons: Tukey's Test	61	
	4.3.7	Histogram	61	
	4.3.8	Pareto Charts	61	
4.4	Data (Collection	62	

CHAPTER 5

ANALYSIS and RESULT

5.1	Introduction	64
5.2	Differences in Yield by Tester	65
5.3	Differences in Yield by Day	74
5.4	Yield Performance At Each Test Insert	80

CHAPTER 6 CONCLUSION

6.1	Introduction	83
6.2	Summary of Findings	83
6.3	Discussion	84
6.4	Shortcoming or Limitation of Analysis	88
6.5	Prospects for Further Work	89

9()

BIBLIOGRAPHY

8

.

List of Figures

Figure	1.1	Semiconductor Products	6
Figure	2.1	Typical General Process Flow of Semiconductor Device	
		Manufacturing	12
Figure	<u>.</u>	Major Processing Steps in Integrated Circuit Fabrication	13
Figure	2.3	Crystal Growth and Wafer Preparation	14
Figure	2.4	Etch and Strip	16
Figure	2.5	Mask Set	17
Figure	2.6	Water Probe	18
Figure	2.7	300mm Wafer Carrier	19
Figure	2.8	200mm Wafer Carrier	19
Figure	2.9	Packaging	20
Figure	2.10	UV Mounting Tape	21
Figure	2.11	Die Bond Process	22
Figure	2.12	Wire Bond Machine	23
Figure	2.13	Wire Bond	23
Figure	2.14	Molding Process	24
Figure	2.15	Ball Attach	25
Figure	2.16	Mark	26
Figure	2.17	Burn-in Process	28
Figure	2.18	Electrical Testing	29
Figure	2.19	Typical Test Process	31
Figure	2.20	Mark Machine	34
Figure	5.1	Box and Whisker Plots for TOS Test Insert	68
Figure	5.2	Box and Whisker Plots for TLO Test Insert	68
Figure	5.3	Box and Whisker Plots for THI Test Insert	69
Figure	5.4	Box and Whisker Plots for TOS Test Insert	76
Figure	5.5	Box and Whisker Plots for TLO Test Insert	77
Figure		Box and Whisker Plots for THI Test Insert	77
Figure	5.7	Average Yield Performance at Each Test Insert	80
Figure	5.8	Pareto Chart: Defect Type by Bin at TLO Test Insert	81

List of Tables

Table	5.1	Average Yield of Each Tester for Each Test Insert (in percent)	66
Table	5.2	Test of Homogeneity of Variance at Each Test Insert (by tester)	67
Table	5.3	Kruskal-Wallis Test for TOS Test Insert (by tester)	70
Table	5.4	Analysis of Variance for TLO Test Insert (by tester)	71
Table	5.5	Analysis of Variance for THI Test Insert (by tester)	72
Table Table		Multiple Comparisons: The Tukey T Method at TLO Test Insert Multiple Comparisons: The Tukey T Method at THI	73
Tanic	J.1	Test Insert	74
Table	5.8	Yield of Each Day for Each Test Insert (in percent)	75
Table	5.9	Test of Homogeneity of Variances at Each Test Insert (by day)	76
Table	5.10	Kruskal-Wallis Test for Each Day in a Week at Each Test Insert	79
Table	6.1	Sample of DRET When the Correlated Disturbance Shifted to 3σ	86

ACRONYMS

ASIC	Application Specific Integrated
ATE	Automatic Test Equipment
BGA	Ball Grid Array
CIM	Computer Integrated Manufacturing
CMOS	Complementary Metal Oxide Semiconductor
DRAM	Dynamic Random Access Memory
DRAM	Data Retention Test
DSP	Digital Signal Processor
DUT	Device under Test
ECL	Emitter-couple
EPROM	Electronic Programmable Memory
FSRAM	Fast Static Random Access Memory
GaAs	Gallium Arsenide
GHKH	Cycle Time
HDTV	High Definition TV
IDI V	Active Power Supply Current
I _{OH}	Output Logic High
I _{OL}	Output Logic Low
ICs	Integrated Circuits
I/O	Input Output
JTAG	Joint Test Action Group
LWSH	Long Write Static Hold
MOS	Metal Oxide Semiconductor
NMOS	n-channel Metal Oxide Semiconductor
PC	Process Control
PMOS	p-channel Metal Oxide Semiconductor
QA	Quality Assurance
ROM	Read-only Memory
RAM	Random Access Memory
SRAM	Static Random Access Memory
THI	High Temperature Test
TLO	Low Temperature Test
TOS	Open Short Test
Vdd	Core Power Supply Voltage
VIH	DC Input Logic High
V_{lL}	DC Input Logic Low
V _{OH}	Light Load Output Logic High
VOL	Light Load Output Logic Low
VREG	Voltage Register