LIST OF FIGURES

Figure	Caption	Page
Figure 2.1	Conductivity-temperature dependence for chitosan-NH ₄ I	9
Figure 2.2	Conductivity-temperature dependence for highest conducting film in methyl cellulose-NH ₄ NO ₃ complex system	10
Figure 2.3	Activation energy and room temperature conductivity variation with NH ₄ CF ₃ SO ₃ concentration	12
Figure 2.4	Structure of NH ₄ ⁺ cations	13
Figure 2.5	H ⁺ ion transport mechanism in chitosan-salt system	14
Figure 2.6	Structure of chitin	15
Figure 2.7	Structure of chitosan	15
Figure 2.8	Structure of PVA	18
Figure 2.9	Stucture of acetic acid	24
Figure 3.1	Flow chart of the experimental work undertaken	33
Figure 3.2	Conductivity holder with blocking stainless steel electrodes	37
Figure 3.3	Dielectric constant-frequency plots for PVA-NH ₄ I, PVA-NH ₄ Br and PVA-NH ₄ Cl	39
Figure 3.4	Dielectric constant-frequency plots for PVA-NH ₄ Br at different temperatures	40
Figure 3.5	FTIR spectra of a (a) pure chitosan acetate (CA) film, (b) CA + 35 wt.% NH_4NO_3 , (c) CA + 40 wt.% NH_4NO_3 , (d) CA + 45 wt.% NH_4NO_3 and (e) CA + 50 wt.% NH_4NO_3	45
Figure 3.6	FTIR spectra of PVA-NH ₄ I system: (a) 5 mol%, (b) 10 mol%, (c) 15 mol%, (d) 20 mol%, (e) 25 mol% and (f) 30 mol% NH ₄ I	46
Figure 3.7	XRD pattern of methyl cellulose-NH ₄ NO ₃ system	48
Figure 3.8	XRD diffractogram of (a) pure PVA, (b) 85PVA:15NH ₄ Cl, (c) 75PVA:25NH ₄ Br and (d) 75PVA:25NH ₄ I	49

Figure 3.9	Room temperature (Ionic conductivity of microporous PVdF- <i>x</i> %PEO membranes (soaked in 1 mol L ⁻¹ LiClO ₄ /PC solution) at 25°C together with some SEM images	50
Figure 3.10	(a) Schematic diagram and (b) picture of the battery holder	52
Figure 3.11	Two readings of linear sweep voltammogram for methyl cellulose-NH ₄ NO ₃ polymer electrolyte at room temperature	53
Figure 3.12	Open circuit voltage of proton battery during 24 hours of storage	54
Figure 3.13	Discharge curves for proton battery at constant current drain of 1 mA	55
Figure 3.14	Voltage-time plot of rechargeable PEO: NH ₄ ClO ₄ (85:15wt.%) + PC 5wt. % electrolyte based proton cell under a load of $57K\Omega$	56
Figure 3.15	Schematic diagram of EDLC fabrication	57
Figure 3.16	The 15 th cycle charge-discharge curves of EDLC at different current densities for working voltage of 0.85 V	58
Figure 3.17	Discharge capacitance versus cycle number for EDLC	59
Figure 4.1	XRD pattern of PVA, chitosan and PVA-chitosan blends with the corresponding ratio	62
Figure 4.2	SEM surface morphology of pure C4P6 film	64
Figure 4.3	SEM cross section morphology of pure C4P6 film	65
Figure 4.4	SEM surface morphology of pure C7P3 film	65
Figure 4.5	SEM surface morphology of pure C8P2 film	66
Figure 4.6	SEM surface morphology of pure C1P9 film	67
Figure 4.7	Enlarged portion of C1P9 showing the pores (white circles) that can be observed on the surface of a PVA-rich sample	67
Figure 5.1	FTIR spectra of (i) pure chitosan powder, (ii) pure chitosan film and (iii) C4P6 film in the 1490 to 1690 cm ⁻¹ spectra region	70
Figure 5.2	FTIR spectra of (i) pure PVA, (ii) PVA film, (iii) pure chitosan powder, (iv) pure chitosan film and (v) C4P6 film in the 3000 to 3700 cm ⁻¹ spectra region	71

Figure 5.3	Schematic diagram of PVA-chitosan blend having a hydrogen bonding	73
Figure 5.4	FTIR spectra of (i) pure chitosan film and pure chitosan film with (ii) 10 wt.% NH ₄ NO ₃ , (iii) 30 wt.% NH ₄ NO ₃ , (iv) 50 wt.% NH ₄ NO ₃ and (v) pure NH ₄ NO ₃ salt in the 3000 to 3700 cm ⁻¹ spectra region	74
Figure 5.5	Schematic diagram of chitosan having interaction with NH_4NO_3 at hydroxyl group	75
Figure 5.6	FTIR spectra of (i) pure chitosan film and chitosan with (ii) 20 wt.% NH ₄ NO ₃ , (iv) 30 wt.% NH ₄ NO ₃ , (v) 40 wt.% NH ₄ NO ₃ and (vi) 50 wt.% NH ₄ NO ₃ in the 1490 to 1700 cm ⁻¹ spectra region	76
Figure 5.7	Schematic diagram of complexation between amine group in chitosan with NH_4NO_3 salt	78
Figure 5.8	FTIR spectra of (i) pure PVA film and PVA with (ii) 10 wt.% NH ₄ NO ₃ , (iii) 20 wt.% NH ₄ NO ₃ , (iv) 30 wt.% NH ₄ NO ₃ , (v) 50 wt.% NH ₄ NO ₃ and (vi) pure NH ₄ NO ₃ salt in the 3000 to 3700 cm ⁻¹ spectra region	79
Figure 5.9	Schematic diagram of complexation between OH group in PVA with NH_4NO_3 salt	80
Figure 5.10	FTIR spectra of (i) pure chitosan film and chitosan with (ii) 10 wt.% EC, (iii) 30 wt.% EC and (iv) 50 wt.% EC in the 1450 to 1750 cm ⁻¹ spectra region	81
Figure 5.11	FTIR spectra of (i) pure chitosan film and chitosan with (ii) 10 wt.% EC, (iii) 30 wt.% EC and (iv) 50 wt. % EC in the 2990 to 3590 cm ⁻¹ spectra region	82
Figure 5.12	FTIR spectra of (i) pure PVA film and PVA with (ii) 10 wt.% EC, (iii) 30 wt.% EC and (iv) 50 wt.% EC in the 3000 to 3700 cm ⁻¹ spectra region	83
Figure 5.13	FTIR spectra of (i) C4P6 and C4P6 with (ii) 10 wt.% EC, (iii) 30 wt.% EC and (iv) 50 wt.% EC in the 2990 to 3590 cm ⁻¹ spectra region	84
Figure 5.14	FTIR spectra of (i) C4P6 and C4P6 with (ii) 10 wt.% EC, (iii) 30 wt.% EC and (iv) 50 wt.% EC in the 1505 to 1685 cm ⁻¹ spectra region.	85
Figure 5.15	FTIR spectra of (i) pure EC, (ii) EC mixed with 0.5 wt.% NH ₄ NO ₃ and (iii) EC mixed with 1.1 wt. % NH ₄ NO ₃ in the region of C=O bending band	86

Figure 5.16	FTIR spectra of (i) pure EC, (ii) EC mixed with 0.5 wt.% NH ₄ NO ₃ and (iii) EC mixed with 1.1 wt.% NH ₄ NO ₃ in the region of C=O stretching band	87
Figure 5.17	FTIR spectra for (i) C4P6, (ii) 90[C4P6]-10AN, (iii) 80[C4P6]-20AN, (iv) 60[C4P6]-40AN and (v) 50[C4P6]-50AN in the 1500 to 1680 cm ⁻¹ spectra region	89
Figure 5.18	FTIR spectra for (i)C4P6, (ii)90[C4P6]-10AN, (iii) $80[C4P6]-20AN$, (iv) $60[C4P6]-40AN$, (v) $50[C4P6]-50AN$ and (vi) pure NH ₄ NO ₃ in the 2970 to 3700 cm ⁻¹ spectra region	90
Figure 5.19	H ⁺ conduction mechanism in salted system	91
Figure 5.20	FTIR spectra for (i) 60[C4P6]-40AN, (ii) 30[60C4P6-40AN]-70EC and (iii) 20[60C4P6-40AN]-80EC in the region of C=O bending band	92
Figure 5.21	FTIR spectra for (i)60[C4P6]-40AN, (ii)60[60C4P6-40AN]-40EC, (iii) 40[60C4P6-40AN]-60EC, (iv) 30[60C4P6-40AN]-70EC and (v) 20[60C4P6-40AN]-80EC in the region of C=O stretching band	93
Figure 5.22	H ⁺ conduction mechanism in plasticized system	94
Figure 6.1	Cole-Cole plot of the pure C4P6 film	97
Figure 6.2	Cole-Cole plot of the sample film 60[C4P6]-40AN	98
Figure 6.3	The dependence of ionic conductivity of salted system at room temperature	99
Figure 6.4	XRD diffractogram of (a) $60[C4P6]-40AN$ film and (b) pure NH_4NO_3	100
Figure 6.5	SEM surface morphology of 60[C4P6]-40AN film	101
Figure 6.6	XRD diffractogram of (a) $50[C4P6]-50AN$ film and (b) pure NH_4NO_3	102
Figure 6.7	SEM surface morphology of 50[C4P6]-50AN film	103
Figure 6.8	XRD diffractogram of (a) 40 [C4P6]-60AN film and (b) pure NH_4NO_3	103
Figure 6.9	SEM surface morphology of 40[C4P6]-60AN film	104
Figure 6.10	Dielectric constant versus frequency for salted system at room temperature	106

Figure 6.11	Dielectric constant versus frequency for sample 60[C4P6]-40AN at elevated temperatures	107
Figure 6.12	Temperature dependent conductivity for salted system	108
Figure 6.13	Activation energy for salted system	109
Figure 6.14	Number density of mobile ions, n for salted system at different temperatures for $l = 10 \text{ Å}$	113
Figure 6.15	Mobility of ions, μ for salted system at different temperatures for $l=10~\text{Å}$	113
Figure 6.16	Number density of mobile ions, n for salted system at different temperatures for $l = 6 \text{ Å}$	114
Figure 6.17	Mobility of ions, μ for salted system at different temperatures for $l=6~\text{Å}$	114
Figure 6.18	Number density of mobile ions, n for salted system at different temperatures for $l = 3 \text{ Å}$	115
Figure 6.19	Mobility of ions, μ for salted system at different temperatures for $l=3$ Å	115
Figure 6.20	Cole-Cole plot of the sample 30[60C4P6-40AN]-70EC film	116
Figure 6.21	The dependence of ionic conductivity on EC at room temperature	117
Figure 6.22	XRD diffractogram of 60[60P40C-40AN]-40EC film	118
Figure 6.23	SEM images of 60[60C4P6-40AN]-40EC film	119
Figure 6.24	XRD diffractogram of 40[60C4P6-40AN]-60EC film	119
Figure 6.25	SEM images of 40[60C4P6-40AN]-60EC film	120
Figure 6.26	Enlarged portion of 40[60C4P6-40AN]-60EC showing the pores (white circles) that can be observed on the surface of the film	121
Figure 6.27	XRD diffractogram of 30[60C4P6-40AN]-70EC film	121
Figure 6.28	SEM images of 30[60C4P6-40AN]-70EC film	122
Figure 6.29	Enlarged portion of 30[60C4P6-40AN]-70EC showing the pores (white circles) that can be observed on the surface of the film	122
Figure 6.30	XRD diffractogram of 20[60C4P6-40AN]-80EC film	123

Figure 6.31	SEM images of 20[60C4P6-40AN]-80EC film	123
Figure 6.32	Enlarged portion of 20[60C4P6-40AN]-80EC showing the pores (white circles) that can be observed on the surface of the film	124
Figure 6.33	Dielectric constant versus frequency for plasticized system with different EC concentration at room temperature	126
Figure 6.34	Dielectric constant versus frequency for 30[60C4P6-40AN]-70EC sample at different temperature	127
Figure 6.35	Temperature dependent conductivity for plasticized system with different plasticizer concentration	128
Figure 6.36	Activation energy for plasticized system	129
Figure 6.37	Number density of mobile ions, n as a function of temperature for plasticized system for $l = 10 \text{ Å}$	133
Figure 6.38	Ionic mobility of ions, μ as a function of temperature for plasticized system for $l = 10 \text{ Å}$	133
Figure 6.39	Number density of mobile ions, n as a function of temperature for plasticized system for $l = 6 \text{ Å}$	134
Figure 6.40	Ionic mobility of ions, μ as a function of temperature for plasticized system for $l=6$ Å	134
Figure 6.41	Number density of mobile ions, n as a function of temperature for plasticized system for $l = 3 \text{ Å}$	135
Figure 6.42	Ionic mobility of ions, μ as a function of temperature for plasticized system for $l=3$ Å	135
Figure 7.1	Linear sweep voltammogram at 5 mV s ⁻¹	138
Figure 7.2	OCP of Zn + ZnSO $_4$ ·7H $_2$ O/30[60C4P6-40AN]-70EC /MnO $_2$ cells during 24 hours of storage	140
Figure 7.3	Discharge curves of primary proton batteries at 2 mA constant current	141
Figure 7.4	Discharge curves of primary proton batteries at 1 mA and 3.5 mA current	141
Figure 7.5	Voltage-Current-Power characteristic of primary proton batteries	143
Figure 7.6	OCP of Zn + ZnSO $_4$ ·7H $_2$ O/30[60C4P6-40AN]-70EC/MnO $_2$ + liquid electrolyte cells during 24 hours of storage	144

Figure 7.7	Discharge-charge characteristic of secondary proton battery	145
Figure 7.8	Discharge curve for secondary proton battery at cycle 1, 4 and 9	146
Figure 7.9	Discharge capacity of secondary proton battery	147
Figure 7.10	Discharge capacity of secondary proton battery considering the active material (MnO_2) in the cathode	147
Figure 7.11	Charged and discharged curves for the EDLC at 0.095 mA cm ⁻² current density	148
Figure 7.12	Charged and discharged curves for the EDLC at 0.381 mA cm ⁻² constant current density	149
Figure 7.13	Discharged curves for the EDLC at 0.095 mA cm ⁻² constant current density	150
Figure 7.14	Discharged curves for the EDLC at 0.381 mA cm ⁻² constant current density	150
Figure 7.15	Discharged capacitance versus cycle number for the EDLC at different current density	151
Figure 7.16	Specific stored energy versus cycle number for the EDLC at different current density	152