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CHAPTER 2

RESEARCH METHODOLOGY

The derivation of reliable forecasts is an important task in many areas.
There are many different types of forecasting procedures, but no simple answer
as to which is “best”. Different forecasting problems require different treatments
and thus the choice depends on a variety of considerations including the
objectives of the study and the properties of the data. This chapter discusses

the methods used to forecast tea yield.

2.1 The Data

The Study is based on tea statistics compiled by the Department of
Statistics, Malaysia. Since tea is one of the earliest industrial crops in
Peninsular Malaysia, data collection on the production of tea has been given
importance. Tea statistics date back to the early thirties and time series data on
tea is from 1947 onwards'. The data is collected during the Annual and
Quarterly Census from tea estates. Information is available for hectareage
planted, average hectareage in production, production of green leaves and
made tea, yield, sales, stocks, imports and exports.

The study uses the series on the quarterly production of tea measured in

tonnes and average hectareage in production for Peninsular Malaysia from

! Agricultural Statistics-Time Series (1988), Department of Statistics, Malaysia.
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1960 to 1996. The quarterly production of tea is the total production of tea from
both the Highlands and the Lowlands. The Highland tea comes from Cameron
Highlands and Lowland tea comes from Perak, Southern Pahang, Selangor

and Johor.

2.1.1 Source of Data

Statistics on Quarterly Tea production is published in the Statistical
Monthly Bulletin. The quarterly production of tea from 1960 to 1970 is given in
the unit of pounds (Lbs.). These figures were converted to tonnes using the
following conversion: 1 tonne is equal to 2066 Lbs. Thereafter the production is
quoted in Kilograms and then by Tonnes. The Department of Statistics,
Malaysia, publishes the data on average hectareage in production in the
Cocoa, Coconut and Tea Statistics Handbook.

Since 1990, the Department of Statistics started publishing the quarterly
production of Green Leaves in Peninsular Malaysia instead of Made Tea.
However, the study is on quarterly production of Tea. On request for quarterly
production of Tea from the Department of Statistics, the department provided
the figures of quarterly production of tea from 1992 to 1997 from their ledgers
but data for the year 1990 and 1991 was unavailable. An expert opinion
suggested that conversion rate can be used to convert the data from green
leaves to tea. The department showed some statistics on conversion and
suggested that the conversion rate is in the range of 22 per cent to 24 per cent.

Some of the managers of the major tea plantations in Cameron Highlands who
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were interviewed agreed with this conversion rate. Based on the above
evidence, the study used the following conversion rates: 22 percent for quarter
1, quarter 3, and quarter 4 and 23 percent for quarter 2, because these rates
corresponded closely to the data set for the years where the actual amount of

made tea and green leaves are known.

2.1.2 Measure of Yield

The production of tea per hectare, yield, measured as tonne per hectare,
is calculated by taking the ratio of quarterly production of tea to average
hectareage in production. Since only annual quarterly hectareage in production
is available, the following is assumed in the calculation of production per
hectare (yield) of tea:
(i) Quarterly average hectareage in production is assumed to be constant for

every quarter of a given year.

(i) Quarterly average hectareage in production is assumed to be equal to the

annual average hectareage in production of that given year.

2.2 Identification Of Factors Affecting Tea Yleld

The identification process begins by examining the trends in tea
production in Peninsular Malaysia. it reviews the literature on factors that
generally affect tea production or yield and then narrows down to factors
affecting the production or yield of tea in Peninsular Malaysia. The identification

process covers both uncontrollable and controllable factors affecting the yield.
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2.3 Evaluating Patterns In Data
The analysis begins by providing descriptive statistics of yield series and
then the plot of the yield series is examined. Decomposition analysis and

Statistical Tests are used to check for patterns of trend, seasonality and cycles.

2.3.1 Examination of Plots

Generally, the examination of plots is to provide visual evidence of the
existence and the behaviour of the series or patterns making up the series. The
examination of the tea yield series plot is to provide visual evidence of the
patterns making up the yield series. Examination of individual plots of the

patterns making up the series Is to show the behaviour of patterns separately

and provide evidence of their existence.

2.3.2 Decomposition Method

Developed in the 1920s, the classical time series decomposition
procedure provides information on the patterns in the data. Graphical insights
into the behaviour of a time series from the decomposition process can help in
identifying the structure of a series and hence in the selection of appropriate
models for forecasting. The general mathematical representation of the
decomposition approach is (see, for example, Makridakis, Wheelwright and

Hyndman, 1998, pp 80-128) :-
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Y, =F(S,, T, E),
where
Y, is the time series value (yield) at period t,
S, is the seasonal component (or index) at period t,
T, is the trend-cycle component at period t, and
E, is the irregular (or remainder) component at period t.
The components can be combined in one of the two ways:
(i) Additive Model: Y, = S, + T, + E,
(ii) Multiplicative Model: Y, = S,. T, E
The additive model is appropriate if the magnitude of the seasonal
fluctuations does not vary with the level of the series. If the seasonal
fluctuations increases or decreases proportionally with the increase or
decrease in the level of the series, then the multiplicative model is appropriate.
A classical decomposition is carried out using the following four steps.

Step 1: The trend-cycle (T,) is computed using a centered moving average.

Tt = lz[( Y:-z*‘";-;’*":”’m ) + ( Y,-,+Y,+:,‘,.+Y,,, )]

Step 2. The de-trended series is computed by removing the trend-cycle
component from the data, leaving the seasonal and irregular terms. That is,

Additive model: Y,~ T,= S, + E;

Multiplicative model: S, . E, = 1+



15

Step3: Once the trend-cycle component has been removed, the seasonal
component is relatively easy to estimate. In classical decomposition, it is
assumed that the seasonal component is constant from year to year. So only
one seasonal value (index) is calculated for each season. This is the adjusted
average of the detrended values for each season. The values are adjusted so
that the sum of the seasonal indices is zero (additive model) or one
(multiplicative model).
Step4: The irregular series E, is computed by subtracting the estimated
seasonality and trend-cycle from the original data series.

Additive model: E, =Y, - T, - S,

Multiplicative model: E, = Y, /(T\.S))

A time series plot of these components gives the best-visualised effect

of these components.

2.3.3 Statistical Tests

The significance of the components can be determined by statistical tests
(see, Farnum and Stanton, 1989). The ones used In this study are non-
parametric tests and are described below. The reason for using non-parametric

test is that, it is free from distribution assumptions, Bradley (1968).
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2.3.3.1 Run Test for Trend
The run test (see, for example, Farnum and Stanton, 1989, pg. 57-60)
is based on the premise that any observations from a horizontal time series
with independent error terms is equally likely to be above or below the median
of the series. To run the test, we first compute the median of the series, then
assign a plus to observations above the median and a minus sign to
observation below it. Finally we list the pluses and minuses in the chronological
order and count the number of runs, or blocks of pluses and minuses.
The number of pluses and minuses depends on whether the series has

an even or an odd number of observations. If it is odd, the median, which is
itself an observation, is ignored and we get ﬁ’—;—‘l pluses and (—"213 minuses.
Otherwise we get 2 of each. Suppose we let:

m= the numbers of +'s = the number of -'s

= 20 ifnis odd

or

=2, if nis even

Then a random no-trend series should produce a random string of pluses
and minuses, that is, a string with neither too few nor too many runs. A series
with trend, or one with large autocorrelation, will tend to have fewer runs; a
series with negative autocorrelation will tend to have many more runs.

The statistic R = the numbers of runs in a random sequence of m pluses
and m minuses have the following mean and standard deviation (see, Hogg

and Craig, 1995, pg.519-520).
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1g = expected number of runs = m+1

o = standard deviation of the number of runs
= m{m-1)
(2m-1)
Decision rule: z = %21, Reject H; if |2] > Za

Decision rule: Reject H, if R> Ry orR <R,

2.3.3.2 Kruskal-Wallis for Seasonality

The test (see, for example, Farnum and Stantom, 1989) is that if the
specific seasonals are purely random with no seasonality, their distribution
should be the same in all L seasons. Then, if ranks are assigned to specific
seasonals, a given rank should be likely to fall in one season as in another.
There should not be a preponderance of, say, low ranks in one season, so the
average ranks in all seasons should be about the same, i.e., within sampling
variability of one another. If we let
R, = the sum of the ranks of the Y,'s in the |" season
n, = the number of specific seasonals in the j" season
n = the total number of specific seasonals =n, + Ny +.. .+ N
then the H statistic used to test the randomness hypothesis is the weighted
sum of squared differences between the average ranks within seasons and

average rank.

R1
H= =5 23:——3(n +1)
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If the specific seasonals are random, H will likely to be fairly small; so if H is
too large we would reject randomness in favor of seasonality. When the null
hypothesis is true and the n, ‘s are even moderately large, H is known to follow
approximately a chi-square distribution, Kruskal and Wallis (1952), with L -1

degrees of freedom, so the critical values for test may be found in statistical

tables.

2.3.3.3 Quarterly Cyclical Dominance(QCD)

Using the cyclical-irregular term in forecasting requires knowledge of the
relative importance of its two components, C, and . If the cycle dominates the
noise, then the cyclical-irregular term will be useful for forecasting. If g
dominates, then the cyclical-irregular term, being primarily noise, has zero
forecast value.

One way of evaluating the relative strength of the cyclical component is
by comparing the trend-cycle to the noise in the series. The procedure for

calculating the quarters for cyclical dominance( QCD) is given here (see, for

example, Farnum and Stantom, 1989).
Given: A sample of n observations, Y;; t = 1, 2, . .
A set of normalised seasonal indexes, Sy, Sy, S;, .-+ St

The set of centered moving averages, MA,, of the Y/s.
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Calculation of percentage changes for Trend-Cycle and Irregular term :
Multiplicative Model: T, C, = MA,

Calculate percentage changes in MA

g = Y, /(S Ma,)

Calculate percentage changes in g,
Calculate the average absolute percentage change in the trend-cycle and

irregular terms for 1, 2, 3,.... period time spans.

QC D - Average absoluta % change in Irregular term
Average absolute % changein lrregular term in trend-cycle

Interpretation: QCD of 1 indicates that the trend-cycle is strong: A QCD beyond

6 indicates very weak or nonexistent cyclical, Skiskin (1984).

2.4 Data Transformation

An examination of the plot of the data provides information on whether
data transformation is necessary. Increasing or decreasing variations in the
fluctuations of the series in the plot indicates the need of data transformation.
There are number of reasons why transformation may be necessary. One
reason is that many statistical techniques require the assumption of normality
of data. Data transformation may also be used to achieve stationarity in
variance. That is, the variance of the error terms remains essentially constant
or stable over time.

To stabilise the variance the common approach taken is to try out the

common transformations based on some characteristics of the series and then
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view the plots to decide which transformations is best able to result in a stable
variance. The commonly used transformations are the logarithmic, square,
cube, square root and inverse. Sometimes, a certain transformation may be
preferred for the reason that it is more interpretable. Chatfield and Prothero
(1973a) used Log transformation but did not obtain a statisfactory model using
Box-Jenkins methods. Several discussants of the Chatfield and Prothero
(1973a) paper, Box and Jenkins (1973), Harrison (1973) and Wilson (1973)
suggested that a more flexible parametric family of transformations, introduced
by Box and Cox (1964) for stabilising the variance should be considered to
improve applicability of statistical models rather than making a decision based
on visual of plots of the commonly used transformation.

Box and Cox (1964), indicated that the choice of this preliminary
transformation is of critical importance, particularly in seasonal time series. For
a given value of the parameter 2, the transformation is defined by :

( (Y}-1)/A,  A=0
Y* = }
L Log(Y,),  A=0
Where for our purposes Y,, assumed to be positive, denotes a non-stationary
time series and A is the transformation parameter. The parameter A is chosen
by the user, is used to achieve normality and to stabilise the variance. The
values of A < 1 are useful for positively skewed data A > 1 for negatively

skewed data. A modified form of this transformation is usually employed to



21

preserve the original order in the data, is given by Makridakis, Wheelwright
and Hyndman (1998) :
f' -YP A<0
Y5 = N Log(Y, ), A=0

Y A>0

In this study, we use the method proposed by Victor (1993) for selecting
a value for the parameter A. This procedure is carried out by grouping N
observations of the series into H subseries, so that a local estimate of mean

and variance within subseries can be obtained. Let z,, be the r ™ observation of

subseries h. We then compute

R R -
- zzh.r Z(Zh‘r“zh)2
— r= — r=1
z,= _—l‘}'{— , Sh = [ e ]1/2
and A should be chosen in such a way that —_—S(T"-_-I)- =a where h =1,2..H

Zp
holds for some constant a >0. This procedure uses the following approaches to
decide the optimal value for variance stabilising parameter of power
transformation.

g 4. i nisimgceelallye verial

An empirical interpretation of the equation ’_‘%h'_/z—) = a leads us to look
Zy

S s .
for a A value such that the ratios -—_——(ﬁ—ﬁ show minimum variation across the h
Zh
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subseries. We select the power by looking for the smallest coefficient of

variation(CV) of T%h_‘ﬁ as a function of A.
Zy

Approach 2 : Estimating Linear reqression in logarithms

Another empirical interpretation of condition —_—f,h:j)- = a can be put in
Zp

the form of the following simple regression model:
Log(S, ) = Log(@) + (1-4)Log(Z, ) *&n  h=123,...H

with the €,'s being a random sample of errors uncorrelated with Log(?:h )ltis

clear that from this form A can be estimated by ordinary least squares

method.

The study would use the second approach to find the best variance

stabilising parameter of power transformation.

2.5 Forecasting Methods

Forecasting methods can be grouped into: quantitative and qualitative
methods. Table 2.1 summaries this categorisation. Quantitative methods
require numerical past data. In both approaches methods vary by whether the
variable under study is seen as a function of its past values or whether other
variables play a role as well. The methods used in this study are quantitative
forecasting procedures as there is sufficient quantified data available about the

yield of tea in Peninsular Malaysia.
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Table 2.1
CLASSIFICATION OF FORECASTING TECHNIQUES
Category Condition of Process Forecasting Assumption
Applicability Technique
Quantitative Information of | History Time Series | Some aspects
Forecasting past. repeats itself | Methods: of past pattern
Quantified in Decomposition | will  continue
the form of X into the future.
numerical data Exponential
Smoothing;
ARIMA;
Filters;
Leading
Indicators
External and | Explanatory
internal Methods:
Factors Regression,
determine Econometric
events models;
Multivariate
ARMA,
Input/Qutput
Qualitative Litte or no | History Exploratory Some aspects
Forecasting quantitative repeats itself | methods: of past pattern
information. Anticipatory will  continue
Sufficient surveys, into the future.
qualitative Catastrophe
knowledge theory; Delphi;
required. Historical

analogies; Life
cycle analysis

External and | Normative
Internal methods:
Factors Cross-impact
determine matrices;
events Relevance
trees; Delphi;
System
dynamics;
market
research

Source : Markridakis and Wheelwright (1979), pg. 4
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Quantitative methods can be further grouped into time series and
explanatory models. There has been considerable debate about the
comparative performance of these models in forecasting. Studies done by
Stekler (1968) suggest that economic models have not been entirely successful
in forecasting economic activity, especially during the sixties. Labys and Pollak

(1984) also expressed similar views on the use of econometric models for

modelling commodities. The same period also saw the development of certain

time series methods. There was an edge to look for an alternative to

econometric models to improve forecast values. This has led to more attention

being given to Exponential Smoothing also known as the Holt-Winter (1960)

method and the parametric modelling of time series which developed by Box

and Jenkins (1970). Table 2.2 outlines the basic differences between the two

approaches.

Table 2.2
Characteristics Of Explanatory And Time Serles Univariate Models

Explanatory Models

Time Serles Models

Explanatory models assume that the
variable to be forecasted exhibits an
explanatory relationship with  other
variables, including its own past.

Time series forecasting treats the
system as a black box and makes no
attempt to discover the factors affecting
its behavior. Therefore, prediction of the
future is based on past values of a
variable.

The objective of the explanatory model
is to discover the form of the relationship
and use it to forecast future values of
the forecast variable.

The objective of time series models is to
discover the pattern in the historical data
series and extrapolate that pattern into
future.

The models assume a specific
relationship between dependent and
independent variables.

Time series forecasting treats the
system as a black box, and makes no
attempt to discover the factors affecting
its behaviour.

Source: Makridakis, Wheelwright and Hyndman (1998), pg. 11.




25

The focus in this Study is on the use of time series models, for the following

reasons:

(i) The objective of the study is to generate forecasts and understand some of
the basic time structured patterns in the yield of tea.

(i) A time series model can be easily implemented by organisations since only
yield information needs to be maintained.

(iii) Explanatory models for tea yield would require information on independent
variables that is not easily available.

Exponential smoothing models and ARIMA models are then used to generate

forecasts for tea yield.

2.5.1 Exponential Smoothing Method

This study is concerned with a variant of exponential smoothing, which is
often known as the Holt-Winters method (see, for example, Makridakis,
Wheelwright and Hyndman, 1998 pg.160-168). This method allows data to be
modelled by a local mean, a local trend and a local seasonal factor, which are

all updated by exponential smoothing. The seasonal effect may be additive or

multiplicative.
The Holt-Winters Method

The study denotes the local mean level, trend and seasonal index
at t by L, , T, and S, respectively. Let «, y and & denote the smoothing
parameters for updating the mean level, trend and seasonal index respectively

and let p denote the number of observations per seasonal cycle. The formulae
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for updating L, , T, and S, when a new observation Y, becomes available, is

given in Table 2.3

Table 2.3: Holt-Winters’ Updating Equations

Additive Seasonality Multiplicative Seasonality
Level L.= a(Y,-Sy )+ (1-a)lay* Twy) L= alY /S,)t(1-a)lut Tt)
Trend To= ¥ (L= La) + (1- )T To= 7 (L= L)+ (1- )T
Seasonal | S,= J(Y,-L) +(1-9)S, S.= S(Y /L) + (1-9)S,

Source: Makridakls, Wheelwright and Hyndman (1998), pg.164-168. .

Then the new forecast, Y, (k) made at time t of the values k periods ahead is

given in Table 2.4.For k=1,2.

Table 2.4: Holt-Winters’ Forecast Equations

Additive Seasonality Multiplicative Seasonality

Forecast

Y, (k) = L+ KT, + Sipu Y (k)= (L + KT)Sip

Source: Makridakis, Wheelwright and Hyndman (1998), pg.164-168.

In order to implement this method, the user must

(a) decide whether to use Holt-Winters additive or multiplicative method,

(b) obtain starting or intial values for L, , T, and S, at the beginning of the series,
(see, Bowerman and O'Connell, 1987, pg. 273-276).

(c) the values of o, y and & are chosen such it gives the minimum MSE or
MAPE,

(d) updating and forecasting s performed using the values in part (a) and (b) in

sample range,
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(e) forecasts are generated by further updating into the post-sample range

using updating equations and forecast equation.

2 5.2 Box-Jenkins approach to univariate model building

(a) The general form of the integrated autoregressive-moving

average (ARIMA) structure (see, for example, Bowerman and O'Connell,

1987, pg. 100) is

$,(B) #e(B)(1-BY'(1-B1)° Y= & + 64(8) 6o(B")ay,

where
B is the backshift operator (BY, = Y\4);
¢ B)=(1- ¢8B- ¢ B2 .. - ¢,B°) are the non seasonal regular

autoregressive parameters;

do(B-)= (1- ¢.,B" -$, B - .. .- ¢#p B™)are the seasonal autoregressive

parameters;
(1 — BY is the difference term of order d;
(1 - B4 is the seasonal difference term of order D;

s = ug (B) ##(B") is the constant term or deterministic trend constant and

4 is the true mean of the stationary time series being modelled;

f,B)=(1-68B- 6,B? - ...- 6,8% are the non seasonal regular moving average

terms;

Go(BY) = (1 - 6y B-- G, B - ...~ 64,B%) are the seasonal moving average

terms;
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a, are random shocks that are assumed to be statistically independent of each
other; each is assumed to have been randomly selected from a normal
distribution that has mean zero and a variance that is the same for each and
every time period t;
Y, is the value of the series or transformed series at time t.
Considering the general Box-Jenkins model, it can be shown (Box
and Jenkins, 1976) that constant term 5 and the autoregressive and
differencing operators ¢ ,(B) #(B")(1-B)(1-B")° determine the basic nature of
the forecasts provided by this model, and it can also be shown (Box and
Jenkins, 1976) that the moving average operators 6,(B) 64(B") determines
how previous random shocks (or residuals, which are predictions of previous
random shocks) modify the basic nature of the forecast
The Box-Jenkins methodology requires that the model to be used in
describing and forecasting a time series be both stationary and invertible. The
stationarity and invertibility conditions on the parameters forms of the operators
#,(B), #s(BY), 8,B) and 6(B") are complicated (Hamilton,1994) and will not
be given here. However, it can be said that
(a) A necessary but not sufficient stationarity condition on parameters of any
form of each of the operator ¢,(B) and #5(B") is that the sum of the values
of the parameter in the operator is less than 1

(b) A necessary but not sufficient invertibility condition on parameters of any
form of each of the operator 4,(B) and 6o(B") Is that the sum of the values

of the parameter in the operator is less than 1
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Developing an accurate but parsimonious ARIMA mode! of this
general form requires a three-stage iterative process. Figure 2.1 shows the

stages in the iterative approach to model building Box and Jenkins (1976):

Figure 2.1: Stages In Model Building

POSTULATE GENERAL
CLASS of MODELS

l

IDENTIFY MODEL

ESTIMATE PARAMETERS

DIAGNOSTIC CHECKING IN
SAMPLE RANGE
(IS THE MODEL ADEQUATE?)

YES

NO

USE MODEL FOR FORECASTING
OUTSIDE SAMPLE RANGE

Source: Box and Jenkin (1976), pg 19.

(a) Model Identification: Examination of the data to see which model in the

class of ARIMA processes appears to be most appropriate. The principal

tools used in identification are sample autocorrelation function and the
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partial autocorrelation function. Since these functions exist only for
stationary series, it is necessary to manipulate the original time series until it
can assume to be stationary. In other words the data will fluctuate around a
constant mean, independent of time. One way of removing non-stationarity

in mean is through the method of differencing.

Z,=V.°vY,,
or
Z, = V.’V Y,

where V operator for differencing,
v, seasonal operator for seasoan! differencing,
d is the degree of non-seasonal differencing used and D is the degree of
seasonal differencing used,
Y, is the original series where the series is stationary in variance,
Y* represents the transformed series to stabilise variance.

in general to determine a particular differencing as given above, one can
rely on the visual plot of a time series. This is often enough to convince a
forecaster that the data is stationary or non-stationary in mean. But, this does
not give the exact degree of differencing required for stationarity. The
autocorrelation function (ACF) and partial autocorrelation function (PACF) plot
can suggest non-stationarity in the mean. If the time plot shows the data
scattered horizontally around a constant mean, the autocorrelations of data

drop to zero relatively quickly. If the time plot is not horizontal, or the
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autocorrelations do not drop to zero, non-stationarity in mean is implied. The

degree of differencing for non-stationary data is determined by carrying out the

appropriate non-seasaonal and seasonal differencing till the autocorrelations
of data drop to zero relatively quickly. When stationarity has been achieved,
examine the autocorrelations to see for dominant spikes in ACF and PACF plot.

The pattern of these dominant spikes is then used to decide the tentative

model.

(b) Estimation: Having made tentative model identification, maximum likelihood
estimation is carried to estimate the parameters. The method of maximum
likelihood finds the values of the parameters which maximise the likelihood
function, L. These estimates are found iteratively. EViews program on
estimation of parameters uses this method of estimation. This method is
usually favoured because it has some desirable statistical properties (see
Box, Jenkins and Reinsell, p. 225).

(c) Diagnostic Checking: Examine the estimated residuals from the fitted model
to see if it is adequate. Ljung-Box Test (Ljung and Box, 1978) is applied to
residuals to test for white noise. If the Ljung-Box Test (Q-Statistic) is
insignificant, then the residuals can be considered as white noise and the

model is adequate.
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Test Procedure: Ljung-Box Test
Hy: pc=0forallk<m

H,: p« # O for some value ofk<m

n-k

Test Statistic: Q,, = n(n+2) Y4
k=l

m = the number of coefficients being tested
n = the number of observations in the series
Decision Rule: (Level o, n, m)
Reject Hy if Qg > %%, (M)
Otherwise do not reject H,

if there may be more than one model identified with white noise then
there Is a need to determine which one of them is to be preferred. A plausible
criterion for choosing the best ARIMA model might appear to be to choose the
model which gives the largest values for the log likelihood function or smallest
Akaike's Information Criterion (AIC), (see, Makridakis, Wheelwright and
Hyndman, 1998 pg. 360).

Log Likelihood Function (In L): The method of maximum likelihood finds
the values of the parameters, which maximises the likelihood function L and its
logarithm function (In L) at the same time (see Hogg and Craig, 1995, p.260-
261). For ARIMA, the likelihood function is penalised for each additional term in
the model. If extra term does not improve the likelihood function more than the

penalty amount, it is not worth adding.
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Akaike's Information Criterion (AIC). It is the penalised likelihood
procedure. Let m = p + q + P +Q be the number of terms estimated in the
model. Then we choose the values of p, q, P and Q by minimising AIC:

AIC =-2log L +2m
where, L denotes the likelihood.

If the first model appears to be inadequate for some reason, then other

ARIMA models may be considered by repeating the above procedure until a

satisfactory model is found.

2.6 Assessment Of Model Fit And Forecast Evaluation

Figure 2.2 shows the forecasting scenario of any forecasting
methodology. Assessments of model fit are carried out for the sample range
(1960 - 1996). Firstly, by examining the plot of Y, (actual) versus F (forecast) to
see for tracking ability of the model and then followed by examination of
correlogram of forecast errors to determine whether it follows a white noise
model using Ljung-Box Test (see, Diagnostic testing, Section 2.5.2).

The models are evaluated for forecast performance. The measures that

will be used to carry out the evaluation are:

MAE (mean absolute error) = —1-21 e, |
n

=]

RMSE (root mean sum squared error) = —I-Ze2

]
=1

l H
MAPE (mean absolute percentage arror) = —;Z| PE, |,

fm]
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where PE, = ( i;—ﬂ)x 100

{

Y is the actual observation for time period t and F, is the forecast for the same

period, the error is defined as ¢, = ¥, - E.

1 !

2.7 Forecasting Software

EViews is used for developing forecasting models. it is utilised for
estimating, forecasting and assessing of models in this study. It is also used for
plotting time series graphs. Excel is used to carry out ranking for specific
seasonals in the Kruskal-Wallis test for Seasonality (see, Kruskal-Wallis test for

seasonality, Section 2.3.3 (b)). Itis also used to calculate H-Statistic in the

Kruskal-Wallis test.
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Figure 2.2: The Forecasting Scenario

(a) Point of reference
£ Time

(b) Past data available n periods of data

ten+ | Yt-l Y(.l Y( Tlme
(c) Future forecasts required
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(d) Fitted values using a model
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(e) Fitting errors
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(f) Forecasting errors (when Y., Y .., etc, becomes available)
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Note: Fioy Fuz e, refers to forecasted values of Yiui, Yo
A fitted value, such as F, could be represented as Y., (Estimated value of Yy, )
Source: Makridakis, Wheelwright and Hyndman (1998), pg. 139.



