CHAPTER 3

Generalized Free Products of Weakly Potent Groups

1. Introduction

In this chapter, we shall study the weak potency of tree products of finitely many
weakly potent groups. The concept of weak potency was first introduced by Evans
[12] (with the name regular quotients) and he showed that free groups and finitely
generated torsion-free nilpotent groups are weakly potent. Later, Tang [40] defined
weak potency independently and he proved that finite extensions of free groups
and finitely d torsion-free nilp groups are weakly potent. Evan [12]

used weak potency to show the cyclic subgroup separability of certain generalised
free products while Kim and Tang [25] and Tang [40] used it to determine the
conjugacy separability of certain generalised free products of conjugacy separable
groups. Despite its usefulness, few groups are known to be weakly potent. Hence in
this chapter, we extend the weak potency property to tree products.

We shall show in this chapter that the tree products of finitely many weakly
potent groups amalgamating finite subgroups are again weakly potent. Then we
give sufficient conditions for the tree products of finitely many weakly potent groups
to be weakly potent when the amalgamated subgroups are infinite cyclic subgroups
or finitely generated subgroups. Our results are then applied to tree products of
polycyclic-by-finite groups and free-by-finite groups. Finally we show that certain

one-relator groups are weakly potent.

2. Tree products amalgamating finite subgroups

In this section we show that tree products of finitely many weakly potent groups
amalgamating finite subgroups are weakly potent. First we have the following lem-

mas.
Lemma 3.1. [40] Let G be a free-by-finite group. Then G is weakly potent.
Lemma 3.2. Let G =G, ;,G; where G, G5 are finite. Then G is weakly potent.

Proof. Since G is free-by-finite ([17]), the result follows from Lemma 3.1.
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Theorem 3.8. Let G = Gy ;G where Gy, G are weakly potent and H is finite.
Then G is weakly potent.

Proof. Let g be an element of infinite order in G.

Case 1. g € G1UGa. WLOG, assume g € G;. Since G, G are residually finite
and H is finite, there exist Ny <5 G1, M a5 Gy such that N\yNH = 1= MNH.
Suppose N1 N (g) = (¢°) for some positive integer s. By the weak potency of G,
we can find a positive integer r such that for each positive integer n, there exists
N3 <af Gy such that No N (g) = (9™"). Let N = N; N N,. Then NG, NNH=1
and N N (g) = (g™"). Now we form G = c,acz where G; = G1/N, Gy = Go/M
and H = HN/N = HM/M. Clearly G is a homomorphic image of G. Let g denote
the image of g in G. Since G is residually finite, there exists P « f G such that
§,...,3™""1 ¢ P. Let P be the preimage of P in G. Then PasG and gP has order
exactly rsn in G/P. The result now follows.

Case 2. g ¢ G1 UGy, WLOG, assume g = ajb;...anbn where a; € G1\H and
bi € G2\H for all i. Since Gy, G2 are residually finite and H is finite, there exist
N 4y Gy, M a5 Gy such that a; ¢ HN, b; ¢ HM foralliand NNH =1=MNH.
As in case 1, we form G. Then ||g|| = ||g|| and hence § has infinite order in G. By
Lemma 3.2, G is weakly potent and the result follows.

Theorem 3.3 can be easily extended as follows:

Theorem 3.4. Let G = (G1,Gy,... ,Gn;Hij = Hj;) be a tree product of Gy, Gy,
-G, I ing the finite subgroups H;; of G; and Hj; of G ;. Suppose each

8

G; is weakly potent. Then G is weakly potent.

Proof. We use induction on n. The case n = 2 follows from Theorem 3.3. Now, let
n > 2. The tree product G has an extremal vertex, say G, which is joined to a unique
vertex, say Gpn_1. The subgroup of G generated by G1,Ga,...,Gn_y is just their
tree product. Let G’ denote this subgroup. Then G = (G’, GniHn-1)n = Hn(n-1))
where H(n_1), and Hp(n_1) are finite. By inductive hypothesis, G’ is weakly potent
and by assumption, G, is weakly potent. Therefore G is weakly potent by Theorem
3.3.

3. Tree products amalgamating infinite cyclic subgroups

In this section, we shall give sufficient conditions for the tree products of finitely
many weakly potent groups amalgamating infinite cyclic subgroups to be weakly
potent.
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Theorem 3.5. Let G = G, G2 where Gy, G, are weakly potent and H = (h) is
infinite cyclic. Suppose G1,G2 are (h)-separable. Then G is weakly potent.

Proof. First we note that since G 1, G2 are weakly potent, we can find positive inte-
gers 1,72 such that for each positive integer n, there exist P < f G1,Q a5 G2 such
that PN (k) = (k™"),Q N (k) = (h™"). Let g be an element of infinite order in G.
Case 1. g € G1UG,. WLOG, assume g € Gy. Let Ny <G be such that NiNn(h) =
(h™"2). Suppose Ny N (g) = (9°) for some positive integer s. By the weak potency
of Gy, we can find a positive integer r such that for each Ppositive integer n, there
exists N2 <5 G such that Ny, N (9) = (9™"). Let N = Ny n N2. Then N <5 Gy,
NN (g) = (¢™") and N N (k) = (A™"2%) for some positive integer t. Let M a; G
be such that M N (k) = (™72, Now we form G = G1 G, where G, =.Gy/N,
Gy = Go/M and # = (h)N/N = (hYM/M. Clearly G is a homomorphic image
of G. Then g has order exactly rsn in G. Our result now follows as in case 1 of
Theorem 3.3.

Case 2. g ¢ G UG,. WLOG, assume g = a1by...anb, where a; € G1\(h) and
bi € G2\(h) for all i. Since G, G are (h)-separable, there exist N1ag Gy, My a5 G,
such that a; ¢ (h)Ny and b; ¢ (h)M, for all i. Suppose Ny N (k) = (h*1) and
My N (k) = (h*2) for some positive integers s; and sp. Let N, <f G1, M2 a5 G, be
such that N3 N (k) = (h™72%%2) = M, 0 (). Let N = Ny 1 Ny and M = M0 M,.
Then N a5 G1,M <5 Gy and NN (h) = M N (h). As in case 1, we form G. Then
Izl = llgll and hence § has infinite order in G. By Lemma 3.2, G is weakly potent
and the result follows.

To extend Theorem 3.5 to a tree product, we need the next few lemmas.
Lemma 3.6. [19] Let G = G ;;G,. Suppose that

(a) G1,G; are H -separable;

(b) for each RasH, there exist N4y G1, M ay Gy such that NNH = MNH CR.

Let K be a subgroup of G, and G is K-separable. Then G is K -separable.
Lemma 3.7. Let G = G15G2 where H = (h) is infinite cyclic. Suppose that
G1, G2 are (h)-weakly potent and (h)-separable. Let K be a subgroup of Gy and G,
is K-separable. Then G is K -separable.
Proof. Let R ag (h) be given. Then R = (h®) for some positive integer s. Since
G1,G are (h)-weakly potent, there exist N <f G1,M ay G5 such that N N (h) =
M N (k) = (h™72%) C R for some positive integers r; and r5. This proves Lemma
3.6(b). Therefore G is K-separable.



Lemma 3.8. Let G = (G,,Gs,... »Gnjaij = aji) be a tree product of G;,G,,
.-+, Gn, amalgamating the infinite cyclic subgroups (ai;) of G; and (aji) of Gj.
Suppose G is weakly potent and each G; is (aij)-separable. Let K be a subgroup of
Gr and G is K -separable. Then G is K -separable.

Proof. We use induction on n. The case n = 2 follows from Lemma 3.7. Now,
let n > 2. As in Theorem 3.4, we write G = (G',Gniamnotyn = Gn(n—1)) Where
G’ is the tree product generated by Gy, G, ..., Gn-1. By inductive hypothesis, G’
is (a(n—1)n)-separable and by assumption, G,, is (an(n—1))-separable. Furthermore,
G is (a(n-1)n)-weakly potent and G, is (@n(n-1))-weakly potent since G is weakly
potent.

Case 1. K C G'. By inductive hypothesis, G’ is K-separable and we are done by
Lemma 3.7.

Case 2. K C G,. By assumption, G, is K- -separable and we are done by Lemma
3.7.

Now, Theorem 3.5 can be extended to a tree product as follows:

Theorem 3.9. Let G = (Gy,Ga,... »Gnjaij = aji) be a tree product of Gy, Gy,
-+, Gn, amalgamating the infinite cyclic subgroups (ai;) of Gi and (aji) of G;.
Suppose each G; is weakly potent and (ai;)-separable. Then G is weakly potent.
Proof. We use induction on n. The case n = 2 follows from Theorem 3.5. Now, let
n > 2. As in Theorem 3.4, we write G = (G, Gni(n—1)n = n(n—1)) where G’ is the
tree product generated by Gy, Gy,...,Gp—;. By inductive hypothesis, G’ is weakly
potent. Hence G’ is (a(n—1)n)-separable by Lemma 3.8. Furthermore by assumption,
Gy is weakly potent and G,, is (an(n-1))-separable. Therefore G is weakly potent
by Theorem 3.5.

Next we show that Theorem 3.9 can be strengthened by using the following result:

Lemma 3.10. Let A be a group and a € A. Suppose A is (a)-weakly potent and
(a)-separable. Then A is (a*)-separable for each positive integer k.

Proof. Let z € A\(a*).

Case 1. z ¢ (a). Since A is (a)-separable, there exists N <f A such that = ¢ (a)N.
Therefore z ¢ (a*)N and we are done.

Case 2. z € (a). Since A is (a)-weakly potent, there exists N <5 A such that
N N (a) = (a"*) C (a¥) for some positive integer r. This implies z ¢ (a*)N and we

are done.
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Theorem 3.11. LetG = (G1,C2,... ,Gniafy’ = a}?*) be a tree product of Gy, G,
-..,Gn, amalgamating the infinite cyclic subgroups (a;}"’) of G; and (a;-'{") of G;.
Suppose each G; is weakly potent and (a;)-separable. Then G is weakly potent.

nij

Proof. By Lemma 3.10, each G; is (a;;’)-separable and we are done by Theorem
3.9.

It is well known that polycylic groups and free groups are subgroup separable
(Mal’cev [30], M. Hall [14]) and finite extensions of subgroup separable groups are
again subgroup separable (Romanovski [37], Scott [38]). Hence polycyclic-by-finite
groups and free-by-finite groups are subgroup separable. Furthermore, polycyclic-
by-finite groups and free-by-finite groups are weakly potent (Wehrfritz [41], Tang
[40)). Hence from Theorem 3.11, we have the following:

Corollary 3.12. Let G1,Gy,... Gy be polycyclic-by-finite groups or free-by-finite
groups. Let G = (G1,G2,...,Gpiafy’ = a?{‘) be a tree product of G,Gs, ...,
Gn, amalgamating the infinite cyclic subgroups (u:}") of G; and (a;-'{‘) of G;. Then
G is weakly potent.

Corollary 3.13. The group G = (a1,az,... ,am;a}' = af',a}? = af? almt =

am') is weakly potent.

We note that Campbell [10] has shown that the infinite tree product G = (...,
a-1,a0,a1,... ;... ,af = af,,...), where p and g are mutually coprime, is not
residually finite. On the other hand, many of the groups in Corollary 3.13 are one-
relator groups (see Meskin, Pietrowski and Steinberg [34], Collins [11] and McCool
[32]).

4. Some applications

We apply Theorem 3.9 & 3.11 to certain free products with commuting subgroups

and some one-relator groups with torsion.
Theorem 3.14. The group G = (a, b; [a™, b™]) is weakly potent.

Proof. We note that G can be written as a generalised free product,

G =) e vilua]) )

Let C = (u,v;[u,v]). Since C is free abelian, C is weakly potent and subgroup
separable. Therefore G is weakly potent by Theorem 3.9.
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Theorem 3.15. Let G = (A * B;[a™,b"]) where a € A and b € B. Suppose that
A, B are weakly potent and A is (a) ble, B is (b) ble. Then G is weakly

potent.

Proof. Since G can be written as

* *
G= Aa"‘ _ u(u,u; [u,v])v= an.

and by assumption, 4, B are weakly potent and A4 is (a)-separable, B is (b)-separable.
Therefore G is weakly potent by Theorem 3.11.

Lemma 8.16. The group M = (u,v;(uv)?),¢ > 1, is weakly potent.
Proof. Let z = uv. Then by Tietze transformations, we obtain
M = (u,v; (w0)) = (u,v,2; (uv)", 2 = wo)

= (u,v,z; (uv)t,v = u”lz)

= (u, z;2%)
Since a free product of a weakly potent group and a finite group is weakly potent,
it follows that M is weakly potent.
Theorem 3.17. The group G = (a,b; (a'b™)%),t > 1, G is weakly potent.

Proof. We note that G can be written as a generalised free product,

G=(a), L wuw)), 0.

Let M = (u,v; (uv)!). By Lemma 3.16, M is weakly potent and by Lemma 1 of (1],
M is (u)-separable and (v)-separable. Therefore G is weakly potent by Theorem
3.9.

Theorem 3.18. Let G = (4 * B;(a'd™)%),¢ > 1, wherea € A and b € B. Suppose
that A, B are weakly potent and A is (a)-separable, B is (b)-separable. Then G is
weakly potent.

Proof. The proof is similar to Theorem 3.15.

Corollary 3.19. Let A, B be polycyclic-by-finite groups or free-by-finite groups
anda € A, b€ B. Then Gy = (A *B;[a™,b")) and G2 = (A xB;(alb’")t),t > 1, are
weakly potent.
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5. Tree prod 1 ting finitely d subgroups

We give sufficient conditions for the tree products of finitely many weakly potent
groups amalgamating finitely generated subgroups to be weakly potent. We shall
begin with the following criterion:

Theorem 38.20. Let G = G\ ;;G2. Suppose that

(a) G1,G3 are weakly potent and H-separable;

(b) for each Ry H, there exist N<ayGy1,M ;G suchthat NNH =R= MNH.
Then G is weakly potent.
Proof. Let g be an element of infinite order in G.
Case 1. g € G1UG,. WLOG, assume g € G;. Since G is weakly potent, we can find
a positive integer r such that for each positive integer n, there exists N« #G1 such that
NN(g)=(¢™). Let R=NNH. Then Ras H. Hence by (b), there exists M a5 Ga
such that M N H = R. Now we form G = é,,‘,c‘:z where Gy = G,/N, G, = Gao/M
and # = HN/N = HM/M. Clearly G is a homomorphic image of G. Then § has
order exactly rsn in G. Our result now follows as in case 1 of Theorem 3.3.
Case 2. g ¢ G, UG, WLOG, assume g = ayby ...anb, where a; € G;\H and
b; € G2\H for all i. Since Gy, G, are H-separable, there exist Ny<f Gy, My <5 Gy
such that a; ¢ HN; and b; ¢ HM, for all i. Let R = NiNM,. Then Ry H.
Hence by (b), there exist Na s Gy, M2 a5 G2 such that NyNH = R = MyNH. Let
N =N;NNzand M = M; N M,. Then N 44 G1,M <4 Goand NNH = M NH.
As in case 1, we form G. Then ||3]| = |lg|| and hence g has infinite order in G. By
Lemma 3.2, G is weakly potent and the result follows.
In order to extend Theorem 3.20 to a tree product, we need the next few lemmas.
Lemma 3.21. Let G = G, 1G2. Let K be a subgroup of G. Suppose that

(a) for each R <7 H, there exists N <7 Gy such that N N H = R;

(b) for each S a5 K, there exists M Ay Gy suchthat MNK = S.
Then for each S af K, there exists P af G such that PN K = S.
Proof. Let Sy K be given. Then by (b), there exists M a5 G2 such that MNK = §.
Let R = M NH. Then R ay H. Hence by (a), there exists N a5 Gp-such that
NNH = R. Now we form G = Gy ;G where G; = G/N,G, = G2/M and
H = HN/N = HM/M. Cleatly G is a homomorphic image of G. Since G is
residually finite and K is finite in G, there exists P af G such that PN K = 1. Let
P be the preimage of P in G. Then P 44Gand PNK = S.
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Lemma 3.22. Let G = (G1,Gy,... ,Gn; Hij = Hj;) be a tree product of Gy, G,
..., Gn, amalgamating the subgroups H;j of Giand Hj; of G;. Let K be a subgroup
of G,. Suppose that

(a) for each R; a5 H;j, there exists N; <f Gi such that N;N Hi; = R;;

(b) for each S a5 K, there exists M a5 G, such that MNK = §.
Then for each S <5 K, there exists P ag G such that PNK = S.

Proof. We use induction on n. The case n = 2 follows from Lemma 3.21. Now, let
n > 2. As in Theorem 3.4, we write G = (G’,G,.;H(,._l)n = Hp(n-1)) Where G’ is
the tree product generated by Gy,Gs,...,Gp_1.
Case 1. K C G’. By assumption, for each R, <f Hn(n-1), there exists N, a5 G, such
that Np N Hp(n—1) = Rn. By inductive hypothesis, for each S < 7 K, there exists
M’ 4y G’ such that M’ N K = S. Hence the result follows from Lemma 3.21.
Case 2. K C G,. By inductive hypothesis, for each R af H(n—1)n, there exists
N'af G’ such that NN H(n-1)n = R. Furthermore by assumption, for each § 45 K,
there exists Mp <5 Gpn such that M, N K = S. Therefore, the result follows from
Lemma 3.21.
Lemma 3.23. Let G = (G1,Gy,... ,Gn;Hij = Hj;) be a tree product of G1, G,
-+ +Gn, amalgamating the subgroups H;; of G; and Hj; of G;. Suppose that

(a) Gi is Hjj-separable;

(b) for each R; a5 Hij, there exists N; ay G; such that N; N Hij = R;.
Let K be a subgroup of G, and G, is K -separable. Then G is K -separable.

Proof. We use induction on n. The case n = 2 follows from Lemma 3.6. Now, let
n > 2. As in Theorem 3.4, we write G = (G',Gn;H(n-1)n = Hn(n—1)) where G’
is the tree product generated by G1,Gy,...,Gn-1. By inductive hypothesis, G’ is
H (n-1)n-separable and by Lemma 3.22, for each R a5 H(n—1)n, there exists N’ af G’
such that NN H(,_1), = R. Furthermore by assumption, G, is Hp(n—1)-separable
and for each R, af Hp(n-1), there exists N, a5 Gp, such that N, N Hypn-1) = Rp.
Case 1. K C G’. By inductive hypothesis, G’ is K- -separable and we are done by
Lemma 3.6.

Case 2. K C Gpn. By assumption, G, is K-separable and we are done by Lemma
3.6.

Now we extend Theorem 3.20 to a tree product.
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Theorem 3.24. Let G = (G1,Ga,... ,Gn; Hij = Hj;) be a tree product of G1, G,
..., Gn, amalgamating the subgroups H;; of G; and Hj; of G;. Suppose that

(a) Gi is weakly potent and Hj-separable;

(b) for each R; a5 Hyj, there exists N; <y Gi such that N; N Hyj = R;.
Then G is weakly potent.

Proof. We use induction on n. The case n = 2 follows from Theorem 3.20. Now,
let n > 2. As in Theorem 3.4, we write G = (G’, Gn;H(n-1yn = Hp(n-1)) Where
G’ is the tree product generated by G1,Ga,...,Gn_;. By inductive hypothesis,
G’ is weakly potent. Furthermore, by Lemma 3.23, G’ is H, (n—1)n-Separable and by
Lemma 3.22, for each Ray H(n_1)n, there exists N’ayG’ such that N'NH(n_1)n = R.
By assumption, Gy, is weakly potent, H,(,_1)-separable and for each R, A Hp(n-1),
there exists Ny a5 G, such that N, N Hp(n—1) = Rn. Hence the result follows from
Theorem 3.20.

We now give some applications of Theorem 3.24. We shall prove that tree products
of finitely many weakly potent groups are again weakly potent if the amalgamated
subgroups are in the centre of their respective groups or the amalgamated subgroups

are retracts of their respective groups.

Lemma 3.25. Let G be a subgroup separable group and H be a finitely generated
subgroup of Z(G). Then for each Ray H, there exists N a5 G such that NNH = R.

Proof. Let R ay H be given. Since R C Z(G), we can form G = G/R. Then
G is residually finite since G is subgroup separable and R is finitely generated.
Furthermore, the subgroup H is finite in G. Hence there exists N « f G such that
NNH =1 Let N be the preimage of N in G. Then NasfGand NNH =R.

Corollary 3.26. Let G = (G1,Go,... , Gn;Hij = Hji) be a tree product of Gy, G,
..., Gn, amalgamating the finitely generated subgroups H;j of Z(G;) and Hj; of
Z(Gj). Suppose each G; is weakly potent and subgroup separable. Then G is
weakly potent.

Proof. Follows from Theorem 3.24 and Lemma 3.25.

Lemma 3.27. [20] Let H be a retract of a group G. If G is residually finite, then
G is H-separable.

Lemma 3.28. Let H be a retract of a group G. Then for each R a5 H, there exists
N <5 G such that NNH = R.
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Proof. Let RayH be given. Since H is a retract of G, then G has a normal subgroup
L such that G = LH and LN H = 1. Let N = LR. First we show N « G. Let
n=1Ilr € N and g = lph € G where l),ls € L and r € R,h € H. Since L « G, we
have ripr~! =1} € L. Therefore g~'ng = h‘ll;lllrlzh = h_ll.;llll’zrh =l3ry € LR
where I3 = h"‘l.;llllgh € Landr = h~'rh € R. Hence N aG. Now clearly
G/N 2 H/R and hence N <5 G. Furthermore, NNH = LRNH = (LNH)R=R
and we are done.
Corollary 3.29. Let G = (G1,G2,...,Gn; Hij = Hj;) be a tree product of Gy, Ga,
-+ ,Gn, amalgamating the subgroups Hi; of G; and Hj; of G;. Suppose each G; is
weakly potent and H;; is a retract of G;. Then G is weakly potent.
Proof. Follows from Theorem 3.24, Lemma 3.27 and Lemma 3.28.

Since polycyclic-by-finite groups and free-by-finite groups are weakly potent and
subgroup separable, from Corollary 3.26 & 3.29, we have the following:
Corollary 3.30. Let G1,Ga,...,Gn be polycyclic-by-finite groups or free-by-finite
groups. Let G = (G1,Gy,... ,Gn;Hij = Hj;) be a tree product of G1,Ga,...,Gy,
amalgamating the subgroups Hi; of G; and Hj; of G ;. Suppose that

(a) each Hy; is a finitely generated subgroup of Z(G;) or

(b) each Hjj is a retract of G;.
Then G is weakly potent.

Corollary 3.31. Let Gy,Ga,...,Gp be finitely generated abelian groups. Let G =
(G1,Ga,... ,Gn; Hij = Hj;) be a tree product of G1,G3,... ,Gn, amalgamating the
subgroups Hi; of G; and Hj; of Gj. Then G is weakly potent.
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