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Chapter II : Theory

2.1 Introduction
The fiber Bragg grating (FBG) is a periodic perturbation of the refractive

index n(z) along the fiber length. The FBG ch istics can be und yod and

modeled by several approaches [1~5]. Coupled mode theory is often the fundamental

for many of these putations. The most distinguishing feature of FBGs is the

flexibility they offer for achieving desired spectral characteristics. Numerous physical
parameters can be varied, including: induced index change, length, apodization,
period chirp, fringe tilt, and whether the grating supports counter propagating or co-
propagating coupling at a desired wavelength. By varying these parameters, a grating
can be made with normalized bandwidths (AA/A) between 0.1 ~ 10 ™, extremely sharp
spectral features, and tailorable dispersion characteristics. In this chapter, we focus on
the optical properties of the short period FBG. In section 2.2, we examine the
properties of uniform gratings when coupling occurs between two counter
propagation modes, since this case yields simple solutions for reflection and
transmission. In section 2.3, the analysis is extended to include two-modes coupling
in non-uniform gratings such as apodized and chirped gratings.

FBGs are produced by exposing an optical fiber to a spatially varying pattern
of ultraviolet intensity. The result is a perturbation to the effective index n, of the

guided mode of interest, described by

Sny(2) = dneg (2) {1 +vcos[27”z +4(2))} 2.1)
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where E,ﬂ is the “dc” index change spatially averaged over a grating period, v is the
fringe visibility of the index change, Ais the nominal period, and ¢(z) describes
grating chirp. If the induced index change is a linear function of the intensity of the
interference laser beams, the visibility v is constrained to lie between 0 (no grating)
and 1 (perfectly balanced interferometer). Figure 2.1 illustrates the variation of the
induced index change along the fiber axis for some common types of FBGs. For
illustrative purpose the size of the grating period relative to grating length has been

greatly exaggerated.
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Figure 2.1: Index modulation in common FBGs () uniform (b) Gaussian-apodized

(c) raised-cosine apodized (d) chirped
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22 Resonant wavelength for grating diffraction
A FBG is simply an optical diffraction grating and thus its effect upon a light
wave incident on the grating at an angle 6, can be described by the familiar grating
equation [6]
nsin@, = nsing, + m(1/A) 2.2)
where 6, is the angle of the diffracted wave and the integer m determines the
diffracted order (see Figure 2.2). This equation predicts the directions &, into which
constructive interference occurs and also capable of determining the wavelength at

which a fiber grating most efficiently couples light between two modes.

m=-

Figure 2.2: The diffraction of a light wave by a grating

In FBGs (also called short period gratings), a coupling occurs between modes
traveling in opposite directions. Figure 2.2 illustrates reflection by a Bragg grating of
a mode with a bounce angle of 6, into the same mode travelling in the opposite
direction with a bounce angle of #, = - 6,. Since the mode propagation constant /3
where it is simply (27/4)n,, and n,, = n,siné, we may rewrite equation (2.2) for

guided modes as
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By =B +mQ2r/A) 2.3)

Figure 2.3: Ray-optic ill ion of de Bragg reflection by a fiber Bragg grating

For first order diffraction, which usually dominates in a Bragg grating, m = -1. By
using equation (2.3) and recognizing S, <0 (negative values describe modes that
propagate in the -z direction), we find that the resonant wavelength for reflection of a
mode of index ., into a mode of index n,, , is

A=(ng, +ng4,)A (2.4)
If the two modes are identical, we get the familiar result for Bragg reflection:

Ag =2ngA.

2.3 Coupled mode theory

Coupled mode theory is a good tool for obtaining quantitative information
about the diffraction efficiency and spectral dependence of fiber gratings. It’s
straightforward, intuitive and capable of modeling accurately the optical properties of
most fiber gratings of interest. The derivations of coupled mode theory are detailed in
numerous articles and texts 7], [8]. In the ideal mode approximation to coupled mode
theory, it is assumed that the transverse component of the electric field can be written
as a superposition of the ideal modes labeled ; (i.e., the modes with no grating

perturbation), such that
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Ei(x,3.2.0) = Y[4,(2)exp(iB;2) + B,(2)exp(-iB 2)).(x, ) exp(=ian)  (2.5)
7
where 4 (z) and B; (z) are slowly varying amplitudes of the jth mode traveling in the

+z and -z directions, respectively. The transverse mode fields e (x,y) might

describe cladding modes. The modes are orth | and do not exch energy in an

ideal waveguide, but the perturbation causes the modes to be coupled such that the
amplitudes 4; and B, of the jth mode evolve along the z axis according to

d4 .
T IR AKG K expli(h, - B)z)
iz *

+i B,(K}, = K expl-i(B, + )] (2.6)
k

dB
— = IR AWK, - Kexpli(h, + §)z)
4 k

~13 By(Kjy + Kp)exp[-i(B, - B))2) @7
k

In equations (2.6) and (2.7), K, L (z) is the transverse coupling coefficient

between modes j and k given by

Ky@=5 [f duty 25572 €Ly e () @38)

where 4¢ is the perturbation of the permittivity, approximately d4¢ = 2nén when
on<<n . The longitudinal coefficient K} (z) is analogous to K 4 (2), but generally
Ky @) << K,;, (z) for fiber modes, and thus this coefficient is usually neglected.

The induced index change &n(x,y,z) in most of gratings is approximately

uniform across the core and nonexistent outside the core. We can thus describe the




Chapter II: Theory

core index by an expression similar to equation (2.1), but with replacing 5,,(2) to

5«,(2). We define two new coefficients

() = (@n, 1 2)Bnee(2) [ drdy eu(x,y) . ¢, (x3) 2.9)

Ky(2) = %ag(z) (2.10)

where o is a “dc” (period averaged) coupling coefficient and «x is an “AC” coupling

coefficient. Then, we can thus write the general coupling coefficient as
‘ 2r
Ky(2)= o’v(z)+2ky(z)cos[72+¢(z)] (2.11)

Equations (2.6) ~ (2.11) are the coupled-mode equations that can be used to describe

FBG spectra below.

2.4  Fiber Bragg gratings
The interaction between a mode of amplitude 4(z) and an identical counter-
propagating mode of amplitude B(z) is the dominant interaction in uniform FBGs.
Equations (2.6) and (2.7) are the coupled mode equation from which the transfer
characteristics of the Bragg grating can be calculated. To find a solution, the
following substitutions are made for the forward (reference) and backward
propagating (signal) modes [9] :
R(z)=A(z) exp (ibz - ¢/2) (2.12)
S(z) =B(z) exp (- idz + ¢/2) (2.13)

Differentiation of equations (2.12) and (2.13) result in the following equations,

R o ioRE +inSE) (2.14)
dz
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B 58 - icRE) (2.15)
dz

where x is the “AC” coupling coefficient from equation (2.10) and oisa general

“dc” self coupling coefficient defined as

- 1.d¢
= 5- - — -
oc=0+ 2% (2.16)

The ois the “dc” coupling coefficient which influences propagation due to the change

in the average refractive index of the mode and is defined as

N

¥4

= Z &, . 17
o= = bng 2.17)

Any absorption, scattering loss, or gain can be incorporated in the magnitude and sign
of the imaginary part of . & is the detuning which indicates how rapidly the power

is exchanged between the radiated field and polarization field, is defined to be

4
S=p6- X
=p-bp
= 2m, (+-1) @18)
A A,
where 4, is the “design wavelength” for Bragg scattering. At phase matching, when
6=0,we find 4, = 2n, A, the field couples to the generated wave over an infinite
distance. Finally, the rate of change of ¢ signifies a chirp in the period of the grating

and has an effect similar to that of the detuning. So, for a uniform grating ;n,gis a
d¢ A
constant, d_ = 0, and thus k, cand o are constants.
1z

Equations (2.14) and (2.15) are coupled first-order ordinary differential

equations with constant coefficients, for which closed-form solution can be found
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when appropriate boundary conditions are specified. The reflectivity of a uniform

fiber grating (of length L) can be found by ing that the litude of the incid

wave from -cc at the input of a grating at z = -L/2 is R(-L/2) = I and that the field
S(L/2) = 0 . The latter condition is satisfied by the fact that the reflected field at the
output end of the grating cannot exist owing to the absence of the perturbation beyond

that region. The amplitude and power reflection coefficients p = S(-L/2)/R(L/2) and r

=|p|*, respectively, can then be shown to be [7], 8]

— Kk sinh(al)
=—_— 2.19
= Fsinh(al) + iacosh(ad) @19
and
_ sinh’(al)
- (2.20)
cosh?(al) - =,
K
where
o= (2.21)

A number of interesting features of FBGs can be seen from these results. For
the purpose of illustration, Figure 2.4 shows the power reflectivity » of two Bragg
grating with different coupling constants «L of 2 and 8, plotted versus the normalized
wavelength

|
s 1+ :}/

(2.22)

where N is the total number of grating period ( N=L/A ) and 2, is the wavelength at
which maximum reflectivity occurs. If N were larger or smaller, the reflectivity
bandwidth would be narrower or broader, respectively, for a given value of xL. From

equation (2.20), we find the maximum reflectivity r,,, for a Bragg grating is
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Fow = tanh? (xl) (2.23)

‘max

and it occurs when & =0, or at the wavelength

M= (14 S, (2.24)
ey
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R
|

JUA

0995

Reflectivity
&

-

1.0000
Normalized Wavelength, A/A__

Figure 2.4: Reflection sp versus lized length for uniform FBG [10].

The points on Figure 2.4 denoted by open circles indicate the “band edges,” or the

points at the edges of the “band gap”; defined such that | c}l < k Inside the band gap,
the amplitudes R(z) and S(z) grow and decay exponentially along z. The reflectivity at

the band edges is

_ =y
Toandedge — T+ (L) (2.25)
and the band edges occur at the wavelengths
Dponieige = o Vz‘s"—‘” . (2.26)
n,

off
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From (2.26) the normalized bandwidth of a Bragg grating as measured at the band

edges is simply

2.27)

where véney is simply the “AC” part of the induced index change.
A more readily measurable bandwidth for a uniform Bragg grating is that

between the first zeros of either side of the maximum reflectivity. Looking at the

excursion of o from o = 0 that causes the numerator in (2.20) to go to zero, we find

Ady _ vong b w
— = — 1+ (—=>—)". 2.28
el J o) @28)

In the “weak-grating limit,” for which V(_F;., is very small, we find

(Vg «ATD) (229)

the bandwidth of weak grating is said to be “length-limited.” However, in the “strong-

grating limit,” we find

(vone >>'1TD) . (2.30)

In strong gratings, the light does not penetrate the full length of grating, and thus the
bandwidth is independent of length and directly proportional to the induced index
change. For strong gratings the bandwidth is similar whether measured at the band
edges, at the first zeros, or as the full-width-at-half-maximum (FWHM).

The group delay and dispersion of the reflected light can be determined from

the phase of the amplitude reflection coefficient p in (2.19). If we denote 6, =phase

(p), then at a local frequency @, we may expand 0, in a Taylor series about @,.
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Since the first derivation d6,/ dw is directly proportional to the frequency , this
quantity can be identified as a time delay. Thus, the time delay 7, for reflected light
from a grating is

r,=—L=.—_—£ (2.31)

7, is usually given in units of picoseconds. Figure 2.5 shows the delay 7, calculated
from the two example gratings from Figure 2.4. Here the grating length is L = lcm,
the design wavelength is Ap = 1550nm, ng =1.45, and the fringe visibility is v = 1.
For the weaker grating in Figure 2.5(a), 5., =1x 10™ , while for the stronger

grating in Figure 2.5(b), dney =4 x 10~ . We see that for unchirped uniform gratings

both the reflectivity and the delay are sy ic about the length 4, .
Since the dispersion d, (in ps/nm) is the rate of change in delay with

wavelength, we find

dr,
iy
_2r, 2 d%,
A 2m a2
27c d°6,
= . 2.32
2 do’ @32)

20
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Figure 2.5: Calculated reflection spectrum (dotted line) and group delay (solid line)

for uniform FBG with (a) kL = 2 (b)kL = 8 [10).
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In a uniform grating, the dispersion is zero near 4, , and only becomes appreciable
near the band edges and side lobes of the reflection spectrum, where it tends to vary
rapidly with wavelength. Qualitatively, this behavior of the delay and dispersion
(along with numerous other characteristics of fiber gratings) can be nicely explained
by an “effective medium picture” developed by Sipe et al. [11]. For wavelengths
outside the bandgap, the boundaries of the uniform grating (at z = + L/2) act like
abrupt interfaces, thus forming a Fabry-Perot-like cavity. The nulls in the reflection
spectrum are analogous to Fabry-Perot resonances-at these frequencies light is trapped

inside the cavity for many round-trips, thus experiencing enhanced delay.

2.5 Two modes Coupling in non-uniform grating

In this section, we investigate the properties of non-uniform gratings in which
the coupling occurs predominantly between two modes. Most gratings designed for
practical applications are not uniform gratings. It has been known for sometime that
apodization can reduce the undesirable side-lobes prevalent in uniform-grating
spectrum [1], [12], [13). Chirping the period of a grating enables the dispersive
properties of the scattered light to be tailored [1]. One of the applications of a chirped
FBG is for dispersion compensation [14].

Direct numerical integration of the coupled mode equations [10] for
calculating the reflection and transmission spectrum that results from two mode
coupling in non-uniform grating has shown to be straightforward and it uses equation
(2.14) and (2.15). The boundary condition for a grating of length L, one generally
takes R(L/2) = 1 and S(L/2) = 0, and then integrates backward fromz=L/2to z = -

L/2, thus obtaining R(-L/2) and S(-L/2).

22
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For modeling apodized gratings by direct numerical integration, we simply use

the z-dependent quantities 0;(z) and «,;(z) in the coupled mode equations, which

give rise to a o(z), that also depends on z. For some apodized grating shapes, we
need to truncate the apodization function. For example, FBGs are frequently written

by Gaussian beams, and thus have an approximately Gaussian profile of the form

4In22’

ey (2) = Gy eXp(— ——r.
o7 (2) o7 €XP( FWHM’)

(2.33)

where dny is the peak value of the “dc” effective index change and FWHM is the
full-width-half-maximum of the grating profile. Typically (2.33) is truncated at
several times the FWHM, i.e., we choose L ~ 3FWHM. Another common profile is
the “raised-cosine” shape

=
FWHM

ey (2) = ey %[1 +cos( 0 (2.34)

This profile is truncated at L=FWHM, where it is identically zero. Many other
apodized profiles are of interest as well, such as “flat-top raised cosine.”
Chirped FBGs can be modelled using the direct integration technique by

Tudi

4 F}

a z-dep

simply i phase term (%)d:ﬁ/ dz in the self coupling

coefficient é defined in (2.16). In terms of more readily understandable parameters,

the phase term for a linear chirp is

1d¢ _ 4/!71‘[2%
2dz A dz

(2.35)

where the “chirp” dA,/dz is a measure of the rate of change of design wavelength
with position in the grating, usually given in units nanometers. Linear chirp can also

be specified in terms of a dimensionless “chirp parameter” F [1], given by

23



Chapter II: Theory

FWHM?
F=EVM 40
z
FWHM?
=t FVHM 2y (2.36)

TR d
F is a measure of the fractional change in the grating period over the whole length of

the grating. It is important to recognize that because chirp is simply incorporated into

the coupled-mode equations as a z-dependent term in the self-coupling coefficient o s
its effect is identical to that of a “dc” index variation o(z) with the same z
dependence. This equivalence has been used to modify dispersion of gratings without
actually varying the grating period [13].

Having described a technique for calculating reflection and transmission
spectrum through non-uniform gratings, we now give examples that demonstrate the
effects of apodization and chirp on the optical properties of FBGs. To demonstrate the
effect of apodization, Figure 2.6 shows the reflection and group delay versus
wavelength for grating similar to those described in Figure 2.5, only here the gratings
have a Gaussian profile as illustrated in Figure 2.1(b) and described by (2.34). The
spectrums are similar except there are no side-lobes on the long-wavelength side and
very different side-lobes on the short-wavelength side of the Gaussian spectrum. The
short wavelength structure is caused by the non-uniform “dc” index change and has

been described in detail elsewhere [4], [11]. The short-wavelength structure lie inside

the local band gap ( ;'l <) associated with the wings of the grating and thus are
strongly reflected there, but if it lies outside the local band gap near the center of
grating where they are only weakly reflected; the wings of the grating thus act like a

Fabry-Perot cavity at short wavelength.
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Figure 2.6: Calculated reflection spectrum (dotted line) and group delay (solid line)

for Gaussian FBG with (a) kL = 2 (b)kL = 8 [10).
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An example of a chirped grating is shown in Figure 2.7. The grating has a
*“zero-dc” raised-cosine profile with FWHM = 1 cm, vg,, =5x10, and a chirp of
dA,/dz = -1 nm/cm. The plot shows group delay calculated from (2.31) (dashed
line), and dispersion calculated from (2.32) (solid line) with the associated reflection
spectrum (inset). The bandwidth of a similar, unchirped grating estimated from (2.30)
is 0.53 nm. A commonly used estimate of dispersion in a linearly chirped grating

when variation of grating period along z is the dominant source of chirp is given by
dA, \a
d, ~100( = )" (ps/nm) (2.37)
where dA,/dz is in units nm/cm, and we have approximated 2, /¢ =100 ps/cm.
According to (2.37), the grating in Figure 2.7 should exhibit a dispersion of d,=-100
ps/nm and thus a delay of 7,=200 ps between 1549-1551 nm. These simple estimates

disagree with the actual values by almost a factor of two, mainly because the effective

chirp resulting from apodization is comparable to the grating-period chirp.
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Figure 2.7: Calculated group delay and dispersion of a chirped grating.

Inset shows the reflection spectrum [10]).
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