CHAPTER 3
METHODOLOGY

3.1 Data

This study uses daily sectoral stock indices for the KLSE from 29 March 1993 -
30 June 1999 The indices included are the Finance Index, Industrial Index.
Plantation Index, Mining Index and Property Index. We explain the selection of
these indices in Chapter 4. The relationship among the five sectors of KLSE 1s
examined for the entire sample period and also for different sub-periods. The
sub-periods are selected such that each of them represents a different market
condition. For this selection, an indicator of the stock market performance is
needed The Composite Index and Emas Index are used as the market

performance indicator.

ata were downloaded from the Financial Times databases by using the software
Sequencer. available in the Main Library of the University of Malaya. To check
for accuracy of the data, they were compared with the data downloaded from the
Bank Negara Malaysia's  website  (http://wwwl.bnm.gov.my).  For any
discrepancy found, we checked the daily stock market report published in The
Star of recent vears. For the earlier years, the data were checked against those
reported in the Daily Diary published by the KLSF.' The discrepancies we found
were mainly due to the Financial Times databases, not taking into consideration

the non-trading days. Indices were recorded for some non-trading days. and they

' We thank Professor Dr Kok Kim Lian from the Department of Applied Statistics, Faculty of
I:conomics and Administration, University of Malaya, for making this source available to us
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are actually readings for the previous day's indices. Other than this, the sectoral

indices available from Sequencer are generally accurate.

3.2 Methodology

3.2.1 Tests on Mean and Variances of Daily Returns
Let 1, denote the sectoral index for period 1. The sectoral returns are computed as
the natural logarithms of index relatives as follows:

Ry - It (3.1)

vy g
Chapter 4 describes the characteristics of the data used in this study. The mean
and variance of the returns are examined. These statstics are compared for the

different sub-periods. Suppose. there are k sub-periods.

We use the t-test to check if the mean return in a sub-period is different from
zero. For example, our null hypothesis is that the mean return is equal to zero,
and the alternative hypothesis is that the mean return is greater than zero. 1f we
hvpothesize that the sub-period has a negative mean return, then our alternative

hypothests is less than zero. The hypotheses are as follows:

The test statistic is given by

where x, is the mean return for sub-period 1,
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s, 1s the standard deviation of the returns of sub-period i and n, is the sample size
for sub-period i. The t-statistic follows a student t distribution with n-1 degrees

of freedom under .

In order to determine whether the mean returns of the k sub-periods are equal,

we use the F-test. The null and alternative hypotheses are as follows:

Ho My Mo o By

H, - Atlecast one of the above equations is not true

The F statistics for the test is given by:
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To test for equality among variances of different sub-periods, the Bartlett test is
performed. The purpose of this analysis i1s to compare the sub-period volatility

behaviour. The hypotheses continue to be tested is as follows:

H 'af:nz-i .r:n’E

H, - At least one of the above equations is not true

The test statistic 1s given by

M- 230267 (3.4)
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If the sub-period sample variances S?differ greatly, q will be large. On the other
hand. when all S?are equal. q is equal 10 zero. The M statistic follows a y:

distribution with k-1 degrees of freedom under Ho.

3.2.2 Short and Long-Run Dynamics
The long-run relationship among the different sectors is examined in Chapter 5
and the short-run relationship in Chapter 6. This section describes the

methodology involved.

25



3.2.2.1 Unit Root Tests

Before modeling the sectoral relationship, the first step is to determine the
presence of unit roots in each of the sectoral indices involved. This is to examine
the stationarity properties of the series. A time series X, that is stationary is said
to be integrated of order zero, or denoted as X, ~ [(0). A series that requires first
order differencing to achieve stationarity is said to be I(1). A series that is I(1)

contains a unit root,

A widely applied test for the presence of unit roots is the augmented Dickey-
Fuller (ADF) test. The test was proposed by Dickey and Fuller (1979). The test

involves testing for presence of a unit root as indicated in the following

hypotheses.
HO B s B 0
Hy a- 0
m
in the equation AXy - e Btr aXy g ZO,AXH rey L= B2 N (35)
i1
where

A 15 the difference operator,
115 the trend term,

m 1s the number of lags of AX, included and

£y ~ IN(O.(T?).

Lags of AX, are included to account for higher-order serial correlation in the
series. [t makes a parametric correction by assuming that the X, series follows an

autoregressive process. The test statistic used is the Dickey-Fuller t, statistic.
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The 1, statistic does not follow a student-t distribution under Ho, but its empirical

distribution is tabulated by MacKinnon (1991).

We fit equation (3.5) with X, = Inl; to test for stationarity in inl. If Hy 1s not
rejected, this shows that the sernes Inl; s non-stationary and contains at least one
unit root. The series will then have to be differenced before it is tested for
stationarity again. We proceed to test for presence of unit roots m Alnl, by
estimating equation (3.5) with X, - Alnl, If Hy is rejected, then Inl - 1(1).
Otherwise, we repeat the process with X, = A% 1Inl, and so on until H,, is rejected.
Note also that equation (3.5) contains a drift and deterministic time trend which

may possibly exist in the sectoral indices.

The next step is to decide on the size of m, the lag order of the ADF test. We fit
cquation (3.5) for different lag orders (We used m=1 to m=12). The lag order,
which yields the smallest Schwarz criterion, is selected as the optimal lag length.

The Schwartz criterton for a single equation is given by

WlogN 41” 5
sC, --N--wlo\h];e,

where
W is the number of regressors, including constant and

¢, is the residual for the regression estimated for equation (3.5).

The assumption of independently and identically distributed error term
underlying the ADF test may not be true. The Phillips-Perron (Phillips and
Perron, 1988) procedure offers an alternative for testing presence of unit roots

that is invariant to a wide class of serially dependent and heteroscedastic
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innovations. It uses nonparametric corrections to improve on the ADFE test

statistic such that it is robust to heterocedasticity and autocorrelation.

The test involves fitting
AX, = p+aX q + g (3.6)

The Phillips-Perron t-statistic for testing Hg -« © 0 in equation (3.6) is given by

1
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m 1s the truncation lag, e, is the residual of the estimated regression for equation
(3.6). 1, 1s the usual t-statistics for testing Hy . o = 0, S, is the estimated standard

error of the OLS estimate of o and & 1s the standard error of the regression.

The t,, statistic has a similar limiting distribution to the ADF test statistic in the
absence of a deterministic time trend. The critical values for the test can be

obtained from MacKinnon (1991).

3.2.2.2 Vector Autoregression (VAR) Model

We consider a VAR model that is used to explain the relationship among the five
sectors of the KLSE. The model contains five variables Xy, Xq,...., and Xg,.
Suppose that X, ~¥1).i= 1.2, ..., 5. The VAR (p) model for five variables is
given by

Ax' 5 ao + ale‘_l o, + aPAX|-p + 8‘ (3'8)
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The model can be rewritten as:

AX €n

AXy,

P P P P
g * Zan,./\xu-u + Zauijzt At Za1S|Ax3,( + iam:’\xu Pt Za15|Ax5.t « By
-1 (] 161

el il

P p p P P
ap; * Zam..Axu o Zan,.*ﬁxz.t ot }:am,.i\xa.z-. Y 2324..1\)(4_: 0 2325../3)(5‘1 e
tal i1 1A v

1+1

8gs * iasml\xu t iasz.li\xz.u ' iafﬁleJt it iam,:\x“ = ia&mAxs.: AT

1=1 o1 154 121 =1

(3.9)

The VAR model explains the short-run relationship among the five sectors. To

determine the lag order p in equation 3.8, we use the Schwarz (1978) criterion

for a system of equations given by

where W is the number of parameters estimated in the VAR model and /is the

value of the log-likelihood function evaluated at these W estimates. As this
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model involves 5 equations, the full system log likelihood is used to compute

SC,. Assuming a multivariate normal distribution,
-8N n A
s (1+ log 211) - élong!

where ;f); = det (Yee'N) and e, is the vector of residuals for period t

Using the VAR model, we can test for presence of lead-lag relationship between

two different sectors. To test 1f sector | leads sector i, we use the F-test to test

Ho .a,” g aq‘z e aulp = O

H, : at least one of the above equations 1s not true.
I Hq 1s rejected, sector j s said to Granger cause sector i.

3.2.2.3 Variance Decomposition

Based on the results from Hamilton (Chapter 10, 1994), the forecasting error of

the VAR model defined in (3.8) for s periods ahead 1s given by

A —
AXers ~ AXe 4 ait = Epes T W1 Epnl T W2 Ben2 ¥ + Wiy Eery

where y; is a matrix with elements made up of 0.1, and elements in a;. 2z, .....ap.

This matrix is defined after equation (10.1.14) of Hamilton (1994).

Since € is a symmetric positive definite matrix, there exists a matrix B and a
unique diagonal matrix D with positive entries along the principal diagonal such
that

Q= BDB
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where

[1 0 0 0]
i
A
: ? .

b5y bsy bsy - 1_5

Using matrix B, we can construct a vector u, from u; - B's.
We can write
€~ Bug = bjuy + byua +

where by denotes the j-th column of matrix B.

The clements in u, are known as orthogonalized innovations. Following equation
(11.5.6) of Hamilton (1994). the mean squared error (MSE) of the s period ahead
forecast 1s

5
MSE(AXer) < D {var(uy ) [bib'y + wibjb'jyy + wabpb'jys + . Wiibyb' ]}

=1

{3.10)

The contribution of the j-th orthogonalized innovation to the MSE of the s period

ahead forecast given by (3.10) is

5
> qvar(uy) [byb'y + wiubgb'jyy F wabb'pps + A wabgb (3.11)

=1

Thus, the variance decomposition allows us to examine the portion of the total
variance of AX, that is due to the innovations of u,. In other words. we can
examine the impact of an innovation in a particular sector on the other sectors in
the KLSE. Another way of looking at this technique is that it provides the out of

sample causality test.
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3.2.2.4 Cointegration and Vector Error Correction (VEC) Model

A linear combination of more than one non-stationary series may result in a
stationary relationship. The series are said to be cointegrated which means that
there 1s a long-run equilibrium relationship among the series. For example, all
the sectoral returns might be bound by a long-run relationship, which 1s also

known, as the cointegrating equation.

A maximum likelihood test procedure that estimates the multiple cointegrating
vectors in a multivariate framework was introduced by Johansen (1991). To

discuss the procedure, consider a VEC model given by
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Alternatively, the model can be expressed as
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‘he presence of level terms in the equations of the VEC model enables one to
est for cointegration by examining the rank of the estimated I1 matrix. If the
ank of 11is 1, where r < S, then there exists r linear independent cointegrating
rectors. In general, if we have j series and each series has one unit root, there can

e from 0 10 j-1 linear cointegrating relations.

nitially, we test for Hy r = 0 or no cointegrating equation against a general
ternative of Hy: r - 0. If Hy is rejected, this means that there is at least one
sointegration. We will continue to test for Hy: r = 1 against Hy: r ~ | for
axistence of one cointegrating equation. If we do not reject the null hypothesis, it
means that the system has one cointegrating equation. 1f we reject the null
hypothesis, then we test for Ho: r = 2 against H,: r - 2, This process is repeated
until a non-rejection is found. If the null hypothesis is rejected all the way, it
means I1 has full rank and a VAR model should be used on x,. Once r is known,
the number of common stochastic trends in the system is given by j - .

The statistic used for the cointegration test is the likelihood ratio trace test
statistic given by

3
O, =-N Y log(1- 4,)

for+]
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vhere r is the hypothesized number of cointegrating vector under Ho, and A, 1s
he i-th largest eigenvalue for C = 0 where
C = ASy1 - Si0 Soo™ Soll
Seo = N Ergq 1y
St~ N Sro 'y
Sio- N Ery, o
S = N'=r, r'y, and

ror and ry, are the residuals from the regression of Axqand X, on p and the lags

of Ax,. respectively.

The critical values for the trace test can be obtained from Osterwald-Lenum
(1992) If the test indicates existence of 1 cointegrating vectors, the j x r matrix
of eigenvectors corresponding to the r largest eigenvalues give the long-run
relationship. The relationship is included in the model (3.12) as I1xy. The term

is also known as the error correction term (ECT).

The VEC mode! given by (3.12) implies that changes in the dependent variable
are a function of the level of disequilibrium in the cointegrating relationship
(captured by the ECT) as well as changes in the other explanatory variables. The
VEC model shows the long-run dynamics of the adjustment process among
sectoral indices. One ECT is obtained if one cointegrating equation were to be

found. If there are two cointegrating equations, then there are two ECTs.

As in the VAR model, we can determine the Granger causality relationship

between two different sectors based on the VEC model. The usual F-test can be

used to test

34



Ho iCy1 = Cy2 = . “Cyp = 0

H, :at least one of the above equations is not true.

f H, is rejected, then sector j is said to lead or Granger cause sector 1.

1.2.2.5 Forecasting

‘he usefulness of the VAR and VEC models is evaluated by examining their
orecasting ability. The forecasts for the daily sectoral indices for the month of
uly 1999 are obtained. This is carried out for all the sectors. Among the
neasures used to evaluate forecast performance are the Mean Absolute
Yeviation (MAD), Root Mean Squared Error (RMSE), Mean Absolute Percent

‘rror (MAPE) and Theil's U.

I'he MAD measures the forecast accuracy by averaging the magnitudes of the
forecast errors. It is interpreted as the absolute error per day in the forecasting
period. Suppose there are s days in the forecasting period. As for the RMSE, it
also measures the average error per day in the forecasting period. These

measures for sector i are given by

N+s i R N+g
> lx‘n “Xa| Y ledl
MAD, = 2 SN =125
s

RMSE; = MSE,

where
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The MAPE is the average of percentage of relative error. It gives us an
indication of how large the forecast errors are in comparnison to the actual values
of the series. The MAPI: for sector 11s

N+s 1

The Theil's U for sector i is given by

Z e
\_‘“,'i"__ '

J _‘Z(xﬂ : ><._M)2

If U, - 1, this implies that the model used for forccasting performs better than the
no change model. The no change model assumes that the values of the time

series are relatively stable from one period to another. Thus, the current value of

the series is used as the forecast for the next period, X, =X, U ¢ 0implies

11

that this model forecasts perfectly, and it is better than the no change model. U, -

| implies that the model performs worse than the no change model.
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