PHOTODYNAMIC THERAPY OF MALIGNANCIES USING HEMATOPORPHYRIN AND ITS DERIVATIVES: PHARMACOKINETICS AND THERAPEUTIC RESPONSE

by

CHAN HOR KUAN
B.Sc. (Hons)

INSTITUTE OF POSTGRADUATE STUDIES AND RESEARCH
UNIVERSITY OF MALAYA
KUALA LUMPUR

DISSERTATION PRESENTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

UNIVERSITY OF MALAYA KUALA LUMPUR 1999
TABLE OF CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

ABSTRAK

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>INTRODUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>A Brief Review of Photodynamic Therapy</td>
</tr>
<tr>
<td>1.2</td>
<td>Review Of An Alternative Procedure For Effective PDT</td>
</tr>
<tr>
<td>1.3</td>
<td>Objectives Of The Study</td>
</tr>
<tr>
<td>1.4</td>
<td>Outline Of The Chapters</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>BIOCHEMISTRY AND PHOTOCHEMISTRY OF Hp AND HpD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2.2</td>
<td>The Discovery Of Hematoporphyrin</td>
</tr>
<tr>
<td>2.3</td>
<td>Earlier Works With Hematoporphyrin</td>
</tr>
<tr>
<td>2.4</td>
<td>Hematoporphyrin Derivative : A First-Generation Sensitizer</td>
</tr>
<tr>
<td>2.5</td>
<td>The Development Of Second Generation Photosensitizer</td>
</tr>
<tr>
<td>2.6</td>
<td>Nature And Biochemistry Of Hematoporphyrin And Hematoporphyrin Derivative</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Hematoporphyrin</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Hematoporphyrin Derivative</td>
</tr>
<tr>
<td>2.7</td>
<td>Photochemistry And Photophysics Of Hp And HpD</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Photochemical Interactions</td>
</tr>
<tr>
<td>2.7.2</td>
<td>Mechanism Of Photodynamic Action : Photoprocesses Of Porphyrins</td>
</tr>
</tbody>
</table>
2.8 Method Of Preparation Of Clinical HpD 25
2.9 Method Of Preparation Of Hp 26
2.10 Analyses And Characterization Of Clinical HpD and Hp 27
2.10.1 Absorption Spectra of Clinical HpD And Hp 27
2.10.2 Fluorescence Spectra Of Clinical HpD And Hp 28
2.10.3 High Performance Liquid Chromatography For Clinical HpD And Hp 31
2.10.4 Pyrogen, Sterility And Toxicity Test For Clinical HpD 31
2.10.4.1 Pyrogen Test 34
2.10.4.2 Aerobic And Anaerobic Sterility Test 35
2.10.4.3 Abnormal Toxicity Test 35
2.11 Conclusion 36

CHAPTER 3 LIGHT SOURCES, REQUIRED PROPERTIES IN PDT AND PHOTORADIATION TECHNIQUES

3.1 Introduction 37
3.2 Review of Light Sources Used In PDT 38
3.2.1 General Review Of Light Sources And Lasers 38
3.2.2 Incoherent Light Sources Used In PDT 39
3.2.3 Coherent Laser Sources Used In PDT 41
3.3 Light Sources And Lasers Developed And Used In This Study 42
3.3.1 Development Of Two Alternative Simple Red Light Sources For Clinical Use 42
3.3.1.1 Modification Of The Overhead Projector Lamp 43
CHAPTER 4 CLINICAL TRIALS USING HEMATOPORPHYRIN DERIVATIVE IN CONVENTIONAL PHOTODYNAMIC THERAPY

4.1 Introduction 60
4.2 Clinical PDT For Cancer 63
4.2.1 Materials And Methods 63
4.2.1.1 Source Of HpD 63
4.2.1.2 Light Source And Instrumentation 64
4.2.1.3 Patient Selection 64
4.2.1.4 Methodology of Treatment Pre PDT 64
4.2.1.5 Treatment Dosimetry 65
4.2.1.6 Methodology of Treatment Post PDT 66
4.3 History and Results of Clinical PDT 66
4.4 Discussion 74
4.5 Conclusion 75
CHAPTER 5 A STUDY OF THE PHARMACOKINETICS OF HEMATOPORPHYRIN AND ITS DERIVATIVES IN MICE

5.1 Introduction 77

5.2 A Review On Tissue Uptake, Distribution And Elimination Of Porphyrins In Murine Model 79

5.3 Materials And Methods 81

5.3.1 Chemicals 81

5.3.2 Animals 82

5.3.3 Extraction Method Of HpD And Hp In Serum And Tissues 82

5.3.4 Hydrolysis Of Hp And HpD Oligomers 83

5.3.5 Measurement Of Fluorescence 84

5.3.6 Calibration Of The Serum And Tissues Assay For HpD And Hp 85

5.3.7 Mathematical Modelling Of Pharmacokinetics 85

5.4 Results 88

5.4.1 Uptake And Retention Of Hp 92

5.4.2 Uptake And Retention Of HpD 94

5.4.3 Calculation Of The Pharmacokinetics Parameters 97

5.4.3.1 Monomeric And Oligomeric Components Of Hp 97

5.4.3.2 Oligomeric Component Of HpD 98

5.5 Discussion 99

5.6 Conclusion 102
CHAPTER 6 IMMEDIATE PDT USING Hp AS THE POSSIBLE PHOTOSENSITIZER COMPARED TO THE CONVENTIONAL HpD

6.1 Introduction 103
6.2 Methodology Of PDT Of EMT-6 Tumours 103
6.2.1 In vitro-In vivo EMT-6 Tumour Line 103
6.2.2 Method Of Tumour Induction, Propagation, Detection And Determination Of The EMT-6 Tumour 104
6.3 Investigation Of Tumour Response Using Hp As The Photosensitizer Compared To The Conventional Photosensitizer, HpD 106
6.3.1 Treatment Protocol 106
6.3.2 Control Experiments 108
6.3.3 Post Treatment Protocol 109
6.3.4 Tumour Volume Assessment 109
6.3.5 Tumour Response Assessment 110
6.3.6 Panicolaous Stain For Tumour Tissue Smears (Cytological Processing) 111
6.4 Results 112
6.5 A Histomorphologic Study Of The Effect Of Hp As Compared To HpD On EMT-6 Tumours 126
6.5.1 Introduction 126
6.5.2 Experimental Methodology 126
6.5.3 Histopathology Examination And Scoring System 127
6.5.4 Histopathological Processing 128
6.6 Results 131
6.7 A Study On Skin Reaction Of Mice Using Hp Compared To HpD 136
6.7.1 Introduction 136
6.7.2 Experimental Methodology 138
6.8 Results 139
6.9 Discussion Of Results 144
6.10 Conclusion 149

CHAPTER 7 CONCLUSION 151

REFERENCES 155

APPENDICES 165
ABSTRACT

The aim of this study is to investigate the use of the simpler porphyrin, Hematoporphyrin (Hp) as a possible photosensitizer for the treatment of malignancies using the alternative Immediate photodynamic therapy (PDT) procedure. In Immediate PDT, photoradiation was administered 5 mins after the administration of drugs as opposed to the conventional delayed (24-48 hrs) treatment procedure. The serum and tissues pharmacokinetics of Hp with comparison to its derivatives, HpD and their therapeutic efficacies have been investigated. A five compartmental model was developed to quantify the analysis of serum and tissue distribution of the drugs with liver as the main store. The pharmacokinetics showed that Hp has a 4 times smaller half-life in serum than HpD. The oligomeric component of HpD has an excretion rate of about 90 times slower from the liver than the monomeric component of Hp from the serum and tissues. The murine tumour response indicated that Hp needed a 3.5 times more drug-light dose product for a similar therapeutic effect with comparison to HpD. Nevertheless one could still minimise skin photosensitivity because of its rapid excretion. A study on the histomorphological changes in both the drugs indicated comparable tumour cell, surrounding normal tissue and vasculature necrosis. A comparison of the skin reaction and the duration of skin photosensitivity were also investigated. The results showed that Hp exhibited negligible skin photosensitivity compared to HpD. In order to develop a local Hp-Immediate PDT protocol for clinical trials in the near future, the conventional delayed PDT procedure with HpD was employed on three patients for the necessity of groundwork. The basis of this includes the preparation and characterization of HpD and the development of two alternative halogen light sources. Studies carried out using the halogen light sources
ACKNOWLEDGEMENTS

My sincere and heart-felt gratitude goes to my immediate supervisor, Prof. K.S. Low, for his help, guidance and many thoughtful discussions regarding this thesis. His support, encouragements, comments and criticisms were particularly helpful throughout this thesis. I wish to express my heart-felt thanks to my co-supervisors, Dr. A.S. Haji Baba for all his contribution, assistance and support especially in the biochemistry aspects of this work and Assoc. Prof. C.H. Yip in the medical aspects.

I wish to acknowledge with thanks the members of the PDT research programme who have helped and supported my work in numerous ways. In particular I thank, Assoc. Prof. J. Pailoor for her contribution in the pathology aspects of this work. Thanks to her invaluable guidance and time spent in this work. I would also like to take this opportunity to thank Prof. N.H. Tan, Dr. G. Baskaran, Prof. L.M. Looi and Ms. Y.L. Lo.

It is also my joy to extend my sincere thanks to Mr. Balam for his superb technical assistance which enable me to complete this thesis. My special thanks to Mr. Leong for his spontaneous availability and his help especially in the animal work. I would like to thank Assoc. Prof. C.K.Sam for allowing me to use the facilities in her laboratory. Thanks also to the personnel in DCL, Ministry of Health and the Department of Microbiology whom had lend a helping hand.

To my friends and fellow graduate students, I am grateful for their gift of friendship, support and sharing with me the weight of this thesis. In particular, I record my thanks to Siew, Quek, Harlina, Min Dea, Tham, Norliza, Chandrika, Asril, Anandan and Siew Choo. Finally, words are not enough to express my heart-felt gratitude to my dad and mum, my brother and to all my brothers and sisters in Christ for their support, encouragement and prayers that helped me complete this work.

Chan Hor Kuan, 1999.
showed that they were reliable, cost-effective and their manoeuvrability in the clinical environment made them suitable as an alternative to the laser for the surface irradiation of tumours. The clinical results showed significant responses in palliation control on advanced external lesions.
ABSTRAK

itu, lampu-lampu halogen ini menghasilkan satu alternatif kepada sistem laser sebagai punca penyinaran pada permukaan sel-sel barah. Percubaan klinikal menunjukkan tindakbalas pengawalan pemulihan yang baik pada sel-sel barah tahap serius.