SELECTIVE SEPARATION OF
LEAD (II) AND CADMIUM (II) FROM SIMULATED
WASTEWATER SOLUTIONS BY ELECTRODEPOSITION ON
CARBON BASED ELECTRODES

LIEW PEK YEW

This dissertation is submitted to Institute of Postgraduate Studies and
Research in partial fulfillment to
Masters of Technology (Environmental Management)
University Malaya

2002
Brief Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgement</td>
<td>i</td>
</tr>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Detail Contents</td>
<td>iii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>v</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vii</td>
</tr>
<tr>
<td>Chapter 1 - Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 2 - Literature Review</td>
<td>6</td>
</tr>
<tr>
<td>Chapter 3 - Experimental Details</td>
<td>61</td>
</tr>
<tr>
<td>Chapter 4 - Results and Discussion</td>
<td>73</td>
</tr>
<tr>
<td>Chapter 5 - Conclusion</td>
<td>131</td>
</tr>
<tr>
<td>Chapter 6 - Recommendations for Future Studies</td>
<td>135</td>
</tr>
<tr>
<td>References</td>
<td>136</td>
</tr>
</tbody>
</table>

Appendix A - Speciation Estimates for Malonic Acid	A-1
Appendix B - Speciation Estimates for the Divalent Metal-Malonate Complexes	B-1
Appendix C - Conversion of Values From Unit ppm to Molarity	C-1
Acknowledgement

I would like to express my deepest gratitude to my supervisor, Dr. Mohammed Kheireddine Aroua for all his invaluable support, advice and kind guidance throughout this research project. He has been very encouraging and helpful in the undertaking of the project.

I also wish to thank my co-supervisor, Assoc. Prof. Dr. Nik Meriam Sulaiman for the guidance she has given me.

I am also very grateful to Saad and Baki for their special assistance during the course of this research.

A big THANK YOU to my parents and my sisters for all their love, advice, support and care. I love you all very much.

Special thanks to my fiancé, Shanggar for sustained encouragement and support over the years.

Thank you to my close friends (you know who you are) for all their support, comments and help during the course of this research.

Finally, I would also like to extend my appreciation to all the people who have made this research possible.
Abstract

The efficiency of electrodepositing Pb and Cd onto two carbon based electrodes - glassy carbon electrode (GCE) and activated carbon paste electrode (CPE) and the selectivity of separating these metals from mixtures were investigated by cyclic voltammetry and square wave voltammetry. Good efficiency was observed in depositing Pb onto these electrodes but for Cd deposition, the efficiency was limited by the hydrogen evolution reaction at pH 3 and the dissociation of water at pH 5. However, this efficiency was improved when some amount of Pb was preplated onto the electrodes. When excess malonic acid was present in the system, the deposition of Cd from its single cation system was improved due to the buffering action of malonic acid and the formation of an activated intermediate that accelerated the electron transfer. Good selectivity was observed for Pb(II) and Cd(II) in system with or without the presence of malonic acid when these two electrodes were employed.
1. INTERRODUCTION
 1.1 General
 1.2 Objective of Study
 1.3 Thesis Organization

2. LITERATURE REVIEW
 2.1 Lead and Cadmium as Heavy Metals
 2.1.1 General Definition and Properties
 2.1.2 Occurrence in Environment
 2.2 Environmental Quality Regulations in Malaysia
 2.3 Non-Electrochemical Approaches for Heavy Metal Treatment
 2.4 Electrochemical Approaches for Heavy Metal Treatment
 2.5 Electrodeposition in Heavy Metal Treatment
 2.5.1 Basic Principles of Electrodeposition
 2.5.2 Previous Electrodeposition Studies
 2.5.2.1 Single Cation Electrodeposition Studies
 2.5.2.1.1 Lead Electrodeposition Studies
 2.5.2.1.2 Cadmium Electrodeposition Studies
 2.5.2.2 Mixed Cation Electrodeposition Studies
 2.6 Voltammetry: Principles and Techniques
 2.6.1 Principles of Voltammetry
 2.6.2 Voltammetric Techniques
 2.7 Voltammetry – Instrumentation
 2.7.1 The Main Instrumentation of Voltammetry
 2.7.2 Solid Working Electrodes
 2.7.2.1 General Introduction
 2.7.2.2 Glassy Carbon Electrode (GCE) – Properties & Application
 2.7.2.3 Carbon Paste Electrodes (CPE) – Properties & Application
 2.7.2.4 Rotating Disc Electrode (RDE)

3. EXPERIMENTAL DETAILS
 3.1 Species Studied
 3.2 Solution Preparation
 3.3 Instrumentation

iii
3.4 Working Electrodes 67
3.5 Procedure 69

4. RESULTS AND DISCUSSION 73

4.1 Voltammetry of the Blank Systems 73
4.2 Validity of Blank Subtraction 76
4.3 Voltammetry of the Free Cation Systems 77
4.3.1 Voltammetry of the Single Cation Systems – Lead(II) 77
4.3.2 Voltammetry of the Single Cation Systems – Cadmium (II) 89
4.3.3 Voltammetry of the Mixed Cation Systems 107
 –Lead(II) & Cadmium (II)
4.4 Voltammetry of the Metal Cation – Complexing Ligand Systems 117
4.4.1 Voltammetry of the Pb-Malonate System 118
4.4.2 Voltammetry of the Cd-Malonate System 122
4.4.3 Voltammetry of the Mixed Cation – Malonate System 128

5. CONCLUSION 131

6. RECOMMENDATIONS FOR FUTURE STUDIES 135

REFERENCES 136
List of Tables

TABLE 1: INDUSTRIAL APPLICATION AND TOXICITY OF LEAD, CADMIUM AND SOME OF THEIR COMPOUNDS 7
TABLE 2: THE EFFLUENT DISCHARGE STANDARDS AND STACK GAS EMISSION STANDARD FOR CERTAIN HEAVY METALS 13
TABLE 3: THE ACCEPTABLE LIMITS OF SOME LEACHABLE HEAVY METALS IN SCHEDULED WASTES PRIOR TO DISPOSAL INTO THE SECURE LANDFILLS 14
TABLE 4: VARIOUS TYPES OF TREATMENT TECHNOLOGIES FOR THE REMOVAL OF HEAVY METALS FROM WASTEWATER 15
TABLE 5: ELECTROCHEMICAL TECHNOLOGIES EMPLOYED IN HEAVY METAL TREATMENT 23
TABLE 6: STANDARD REDUCTION POTENTIALS 27
TABLE 7: RELATIONSHIP OF E TO SURFACE CONCENTRATIONS 42
TABLE 7a: THE DIFFERENT TYPES OF VOLTAMMETRIC TECHNIQUES 47
TABLE 8: BASIC REQUIREMENTS OF THE MATERIAL USED FOR WORKING ELECTRODES 53
TABLE 9: SUMMARY OF THE CYCLIC VOLTAMMETRY STUDY 61
TABLE 10: SUMMARY OF THE SQUARE WAVE VOLTAMMETRY STUDY 62
TABLE 11: OPERATING PARAMETERS FOR CYCLIC VOLTAMMETRY AND SQUARE WAVE VOLTAMMETRY STUDIES 69
TABLE 12: CATHODIC POTENTIAL RANGES OF GCE AND CPE IN THE BLANK SOLUTIONS (pH 3 & 5) 75
TABLE 13: COMPARISON OF THE EXPERIMENTAL E_d AND THEORETICAL E_t VALUES FOR Pb(II) AT GCE AND CPE 84
TABLE 14: PREDICTED INCIPIENT ELECTRODEPOSITION POTENTIALS FOR 0.1PPM Pb(II) AT GCE AND CPE 86
TABLE 15: COMPARISON OF THE EXPERIMENTAL E_d AND THEORETICAL E_t VALUES FOR Cd(II) AT GCE AND CPE 105
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 16</td>
<td>The incipient electrodeposition potentials of Pb(II) and Cd(II) when present in mixtures that contain a fixed amount of Cd(II) and a variation of Pb(II) concentration from 1 ppm to 50 ppm, for both electrodes at pH 3</td>
</tr>
<tr>
<td>Table 17</td>
<td>The incipient electrodeposition potentials of Pb(II) and Cd(II) when present in mixtures that contain a fixed amount of Cd(II) and a variation of Pb(II) concentration from 1 ppm to 50 ppm, for both electrodes at pH 5</td>
</tr>
<tr>
<td>Table 18</td>
<td>The incipient electrodeposition potentials of Pb(II) and Cd(II) when present in mixtures that contain a fixed amount of Pb(II) and a variation of Cd(II) concentration from 1 ppm to 50 ppm, for both electrodes at pH 3</td>
</tr>
<tr>
<td>Table 19</td>
<td>The incipient electrodeposition potentials of Pb(II) and Cd(II) when present in mixtures that contain a fixed amount of Pb(II) and a variation of Cd(II) concentration from 1 ppm to 50 ppm, for both electrodes at pH 5</td>
</tr>
<tr>
<td>Table 20</td>
<td>Comparison of the E_θ values for 20 ppm Pb(II) in systems with and without the presence of excess malonic acid for GCE and CPE at pH 3 & 5</td>
</tr>
<tr>
<td>Table 21</td>
<td>Comparison of the E_θ values for 20 ppm Cd(II) in systems with and without the presence of malonic acid for GCE and CPE at pH 3</td>
</tr>
<tr>
<td>Table 22</td>
<td>Comparison of the E_θ values for 20 ppm Cd(II) in systems with and without the presence of malonic acid for GCE and CPE at pH 5</td>
</tr>
<tr>
<td>Table 23</td>
<td>Comparison of the E_θ values in volt for 20 ppm Cd(II) & Pb(II) in systems with and without the presence of malonic acid for GCE and CPE at pH 3 & 5</td>
</tr>
</tbody>
</table>
List of Figures

FIGURE 1: TYPICAL DOSE-RESPONSE CURVE FOR NON-ESSENTIAL ELEMENTS 6
FIGURE 2: SCHEMATIC DIAGRAM OF AN ELECTRODIALYSIS CELL 24
FIGURE 3: CONCENTRATION – DISTANCE PROFILES FOR VOLTAMMETRY IN STIRRED SOLUTION (A) E POSITIVE OF E° (B) E = E° (C) E NEGATIVE OF E° 44
FIGURE 4: HYDRODYNAMIC VOLTAMMOGRAM WITH REPRESENTATIVE REPRESENTATIVE CONCENTRATION – DISTANCE PROFILES FOR A SOLUTION CONTAINING 1mM OF O AND NO R 46
FIGURE 5: POTENTIAL WAVEFORM OF LINEAR SWEEP VOLTAMMETRY 48
FIGURE 6: POTENTIAL WAVEFORM OF CYCLIC VOLTAMMETRY 48
FIGURE 7: POTENTIAL WAVEFORM OF SQUARE WAVE VOLTAMMETRY 49
FIGURE 8: INSTRUMENTATION FOR VOLTAMMETRY 51
FIGURE 9: ELECTROCHEMICAL CELL FOR VOLTAMMETRY 52
FIGURE 10: ROTATING DISC ELECTRODE 58
FIGURE 11: THE PATTERN FLOW TO THE RDE AND ACROSS ITS SURFACE, ASSUMING LAMINAR FLOW 59
FIGURE 12: CYCLIC VOLTAMMOGRAMS OF 20PPM Pb(II) AT CPE (pH 3) AT DIFFERENT E FINALS 70
FIGURE 13: AN EXAMPLE OF EXPERIMENTAL REPEATABILITY FOR GCE 71
FIGURE 14: AN EXAMPLE OF EXPERIMENTAL REPEATABILITY FOR CPE 72
FIGURE 15: COMPARISON OF CYCLIC VOLTAMMOGRAMS FOR GCE AND CPE IN BLANK SOLUTIONS AT pH 3 73
FIGURE 16: COMPARISON OF CYCLIC VOLTAMMOGRAMS FOR GCE AND CPE IN BLANK SOLUTIONS AT pH 5 74
FIGURE 17: CYCLIC VOLTAMMOGRAM FOR 1PPM Pb(II) AT GCE (pH 3) 78
FIGURE 18: CYCLIC VOLTAMMOGRAM FOR 20PPM AND 50PPMPb(II) AT GCE (pH 3) 78
FIGURE 58: COMPARISON OF CYCLIC VOLTAMMOGRAMS FOR 20PPM Pb(II) SYSTEMS WITH AND WITHOUT MALONIC ACID AT CPE (pH 5) 120

FIGURE 59: SPECIES DISTRIBUTION DIAGRAM FOR Pb-MALONATE SYSTEM 121

FIGURE 59(a): SPECIES DISTRIBUTION DIAGRAM FOR Cd-MALONATE SYSTEM 122

FIGURE 60: COMPARISON OF CYCLIC VOLTAMMOGRAMS FOR 20PPM Cd(II) SYSTEMS WITH AND WITHOUT MALONIC ACID AT GCE (pH 3) 124

FIGURE 61: COMPARISON OF CYCLIC VOLTAMMOGRAMS FOR 20PPM Cd(II) SYSTEMS WITH AND WITHOUT MALONIC ACID AT CPE (pH 3) 124

FIGURE 62: COMPARISON OF CYCLIC VOLTAMMOGRAMS FOR 20PPM Cd(II) SYSTEMS WITH AND WITHOUT MALONIC ACID AT GCE (pH 5) 126

FIGURE 63: COMPARISON OF CYCLIC VOLTAMMOGRAMS FOR 20PPM Cd(II) SYSTEMS WITH AND WITHOUT MALONIC ACID AT CPE (pH 5) 126

FIGURE 64: THE ACTIVATED INTERMEDIATE IN THE INNER SPHERE MECHANISM 127

FIGURE 65: COMPARISON OF CYCLIC VOLTAMMOGRAMS FOR 20PPM Pb(II) AND Cd(II) SYSTEMS WITH AND WITHOUT MALONIC ACID AT GCE (pH 3) 129

FIGURE 66: COMPARISON OF CYCLIC VOLTAMMOGRAMS FOR 20PPM Pb(II) AND Cd(II) SYSTEMS WITH AND WITHOUT MALONIC ACID AT CPE (pH 3) 129

FIGURE 67: COMPARISON OF CYCLIC VOLTAMMOGRAMS FOR 20PPM Pb(II) AND Cd(II) SYSTEMS WITH AND WITHOUT MALONIC ACID AT GCE (pH 5) 130

FIGURE 68: COMPARISON OF CYCLIC VOLTAMMOGRAMS FOR 20PPM Pb(II) AND Cd(II) SYSTEMS WITH AND WITHOUT MALONIC ACID AT CPE (pH 5) 130