1. INTRODUCTION

1.1 General 1
1.2 Objective of Study 4
1.3 Thesis Organization 4

2. LITERATURE REVIEW

2.1 Lead and Cadmium as Heavy Metals 6
 2.1.1 General Definition and Properties 6
 2.1.2 Occurrence in Environment 8
2.2 Environmental Quality Regulations in Malaysia 12
2.3 Non-Electrochemical Approaches for Heavy Metal Treatment 15
2.4 Electrochemical Approaches for Heavy Metal Treatment 21
2.5 Electrodeposition in Heavy Metal Treatment 26
 2.5.1 Basic Principles of Electrodeposition 26
 2.5.2 Previous Electrodeposition Studies 29
 2.5.2.1 Single Cation Electrodeposition Studies 30
 2.5.2.1.1 Lead Electrodeposition Studies 30
 2.5.2.1.2 Cadmium Electrodeposition Studies 34
 2.5.2.2 Mixed Cation Electrodeposition Studies 37
2.6 Voltammetry: Principles and Techniques 40
 2.6.1 Principles of Voltammetry 40
 2.6.2 Voltammetric Techniques 46
2.7 Voltammetry – Instrumentation 51
 2.7.1 The Main Instrumentation of Voltammetry 51
 2.7.2 Solid Working Electrodes 53
 2.7.2.1 General Introduction 53
 2.7.2.2 Glassy Carbon Electrode (GCE) – Properties & Application 54
 2.7.2.3 Carbon Paste Electrodes (CPE) – Properties & Application 56
 2.7.2.4 Rotating Disc Electrode (RDE) 58

3. EXPERIMENTAL DETAILS 61

3.1 Species Studied 61
3.2 Solution Preparation 63
3.3 Instrumentation 65
4. RESULTS AND DISCUSSION

4.1 Voltammetry of the Blank Systems
4.2 Validity of Blank Substraction
4.3 Voltammetry of the Free Cation Systems
4.3.1 Voltammetry of the Single Cation Systems – Lead(II)
4.3.2 Voltammetry of the Single Cation Systems – Cadmium (II)
4.3.3 Voltammetry of the Mixed Cation Systems – Lead(II) & Cadmium (II)
4.4 Voltammetry of the Metal Cation – Complexing Ligand Systems
4.4.1 Voltammetry of the Pb-Malonate System
4.4.2 Voltammetry of the Cd-Malonate System
4.4.3 Voltammetry of the Mixed Cation – Malonate System

5. CONCLUSION

6. RECOMMENDATIONS FOR FUTURE STUDIES

REFERENCES