STRUCTURALLY COMPLEX MOLYBDENUM OXIDE MODEL CATALYSTS FROM PREPARATIVE NANOSCIENCE

NUR DIANA BINTI OTHMAN

DISSERTATION SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF PHILOSOPHY

INSTITUTE OF POSTGRADUATE STUDIES UNIVERSITY OF MALAYA KUALA LUMPUR

NOVEMBER 2003

Abstract

Molybdenum oxide based catalysts is prepared by precipitation method. The influence of preparation variables of temperature, acid concentration and molybdenum concentration on the structure of molybdenum oxide is investigated by Powder X-ray Diffraction, Raman Spectroscopy, Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). The combination of Powder XRD and Raman Spectroscopy was used to identify the phase and the structure of the fresh precipitate. TEM and SEM are applied as a supplement to get a better understanding of the structure and morphology of the molvbdenum oxide obtained. The current preparation routine for MoVTeNb Oxides defect introduction is the incorporation with foreign atoms although the high chemical complexity of such systems makes understanding and control of catalyst formation extremely difficult. An alternative way is to reduce the chemical complexity by maintaining the same high structural complexity by preparing Molvbdenum Oxide alone. Nanotechnology is a suitable tool for making specific oligo anions by carefully connecting MoO6 octahedra. Four types of cation used were found to be clearly influencing the phase and structure obtained by looking at the size of the series $Li^+ < Na^+ < K^+ < NH_4^+$. Ammonium as counter-ion produced supramolecular Mo₃₆O₁₁₂⁴ and hexagonal MoO₃ while potassium vielded supramolecular Mo₃₆O₁₁₂⁴⁻, hexagonal MoO₃, and additional phase trimolybdate. Both sodium and lithium resulted in hexagonal MoO3 and orthorhombic MoO3 respectively.

i

ACKNOWLEDGEMENT

In the name of Allah, Most Gracious and Most Merciful ...

Deepest thanks especially to my supervisor.

Assoc Prof Dr Sharifah Bee Abd Hamid

for giving me an opportunity to be one of her students even though I was from a different field (Biochemistry) during my degree and also for her advices, encouragement, support and discussion for me to complete my dissertation for approximately 2 years.

Special thanks to my second supervisor.

Prof Robert Schlögl

for his continuous discussion and supports during my work in Fritz Haber Institute of Max Planck Society in Berlin, Germany.

Warmest thanks to Dr Dirk Niemeyer (head of preparation group), Stefan Knobl (expert phD student) under Prof Schlögl, Dr Frank Girgsdies (very expert XRD guy), and Dr Olaf Timpe from Fritz Haber Institute for their valuable discussion and guidance through my days in Fritz Haber Institute. Thanks too to my Malaysian colleagues, Norfi Abdullah, and Qureshiah Begum Abd Basher who were responsible for their contribution in part of my thesis.

Not forgotten, Gisela Weinberg for SEM, Dr Jacob Wagner for TEM, Edith Kjtzellman for XRD measurement, and Gisela Lorentz for helping me in the lab.

My warmest feeling to my beloved family, my father (abah), my mother (mak), sisters (eni and ayang), brothers (firdaus and epoi), my brother in law (Sani), my fiance (Rosh), for their love, encouragement and support during my journey to complete my dissertation. Special to my father (abah), thank you so much for your pray, support, understanding, encouragement, advices, and worries especially while I was abroad in Germany, thousand kilometers away from Malaysia.

Many thanks to MOSII for their financial support (IRPA RM8 33-02-03-3010). Last but not least, thanks to my group (Petrochemical) for their help and support while I was in COMBICAT, University Malaya.

Contents

ς.	ABST	RACT	i
	ACKNOWLEDGEMENT		
TABLE OF CONTENTS			iii
INDEX OF FIGURES			
	INDEX	OF TABLES	x
	LIST C	OF ABBREVIATIONS	xi
	1.0 IN	TRODUCTION	1
	1.1	Effect of various synthesis parameters on Molvbdenum phase	8
	1.2	Outline of Work	25
	2.0 F	XPERIMENTAL PROCEDURE	26
	2.1		
	2.1	Catalyst Precursor	26
	2.2	Theory on Analytical Method Used	29
		2.2.1 Powder X-ray Diffraction (XRD)	29
		2.2.2 Raman Spectroscopy (Raman)	51
	2.3	Experimental Work	65
		2.3.1 X-ray Diffraction Experiment	65
		2.3.2 Raman Spectroscopy Experiment	66
		2.3.3 Transmission Electron Microscopy (TEM) Experiment	67
		2.3.4 Scanning Electron Microscopy (SEM) and Energy	67
		Dispersive X-ray (EDX) Experiment	

3.0 RESULTS	68
3.1 Powder X-ray Diffraction	68
3.1.1 Ammonium cation	69 80 85 87
3.2 Raman Spectroscopy	90
3.2.1 Phase Identification	90 10 2
4.0 DISCUSSIONS	120
5.0 CONCLUSION	135
REFERENCES	137
APPENDIX A	144
APPENDIX B	154

-

Index of Figures

Figures	Title	Page	
Figure 1.1 M1 (above) and M2 Phase (below)		2	
Figure 1.2 Typical Mo-O bond distances in Mo Oxides		3	
Figure 1.3	Parameters affecting precipitation taken from Weitkamp et al., Preparation in Catalysis.	5	
Figure 1.4	Post precipitation process	6	
Figure 1.5	Molybdenum species in solution at different pH taken from Tytko and Glemser (20).	7	
Figure 1.6	XRD pattern and Raman spectrum of supramolecular like-phase.	10	
Figure 1.7	Three orthogonal views of the cluster molecule in the supramolecular phase with potassium as cation. The gray sheres represent potassium atoms that are located inside the cluster.	12	
Figure 1.8 Figure 1.9			
Figure 1.10	XRD pattern and Raman spectrum of trimolybdate	18	
Figure 1.11	Crystal structures of potassium trimolybdate along a, b and c directions respectively.	20	
Figure 1.12	XRD pattern and Raman spectrum of orthorhombic MoO3	22	
Figure 1.13	Structure of orthorhombic MoO_3 , seen along a (top), c (middle), and b (bottom)	24	
Figure 2.1	Setup of Mettler-Toledo DL 77 Titrator	27	
Figure 2.2 Figure 2.3	Schematic of X-ray Diffractometer Schematic of X-ray Diffraction tube	30 33	
Figure 2.4	Scintillation counter	35	
Figure 2.5	The position-sensitive detector: $E=incoming X-ray photon; V1 and V2=voltage at capacitors 1 and 2 respectively, d1 and d2=distances from the entry point of the photon to sides 1 and 2 of the detector, respectively$	37	
Figure 2.6	Characteristic lines of copper superimposed on the white radiation spectrum	40	
Figure 2.7	Bragg reflection of X-rays from parallel planes of atoms	42	
Figure 2.8 Figure 2.9	Schematic of transmission sample holder Schematic of reflection sample holder	45	
Figure 2.9 Figure 2.10	The general principle of measurement, Raman effect	46 52	
Figure 2.11	Fundamental vibrations of several molecules	55	
Figure 2.12	Schematic diagram of Raman spectrometer	57	
Figure 2.13	Energy level diagrams of Rayleigh scattering, Stokes Raman scattering, and anti-Stokes Raman scattering	60	

v

	Figure 2.14 Figure 2.15	Examples of Raman active and inactive vibrations in CO ₂ Raman spectrum	63 64
	Figure 3.1	XRD pattern of 3 samples prepared at the same concentration of molybdenum (0.7M) and acid concentration (1.0 M) but varying temperature; $256:30^{\circ}C$, $227:50^{\circ}C$ and $232:70^{\circ}$	70
	Figure 3.2	XRD patterns of 2 samples prepared at the same concentration of molybdenum (1.0 M) and acid concentration (1.0 M) but varying temperature; sample 257: 30° C, sample 228: 50° C	71
	Figure 3.3	Diagram of state of phases yielded by varying parameters using ammonium as counter-ion	73
`	Figure 3.4	Section XRD patterns of samples with supramolecular phase structure prepared at various concentration of acid, concentration of molybdenum and temperature	74
	Figure 3.5	Peak fitting of characteristic peak of supramolecular phase, with minor peak on the left and major peak in the middle (corresponds to sample 225)	75
	Figure 3.6	XRD pattern of sample 227 with hkl value	80
	Figure 3.7	XRD pattern of 3 samples prepared at the same concentration of K_2MoO_4 (0.28 M) and HNO ₃ (2.0 M) but varying temperature (sample 249:30°C, 219:50°C and 229:70°C)	81
	Figure 3.8	(sample 243.30 C, 215.30 C and 223.70 C) XRD pattern of 3 samples prepared at the same concentration of K_2MOQ_4 (2.0 M) and HNO ₃ (2.0) but varying temperature (sample 250:30°C, 245:50°C and 244:70°C)	82
	Figure 3.9	Diagram of state of phases yielded by varying parameters using potassium as counter-ion	85
	Figure 3.10	XRD pattern of 3 samples prepared at the same concentration of $L_{12}MoO_4$ (0.28 M) and HNO ₃ (2.0 M) and varying temperature (sample 251:30°C, 222:50°C and 230:70°C) (need to be further heated)	86
	Figure 3.11	XRD pattern of sample 251 from lithium cation with hkl value obtained from PDF 5-508. MoO3 orthorombic	87
	Figure 3.12	XRD pattern of 3 samples prepared at the same concentration of Na_2MoO_4 (0.28 M) and HNO_3 (2.0 M) and varying temperature (sample 251:30°C, 222:50°C and 230:70°C)	88
	Figure 3.13	Raman spectrum of 3 samples prepared at the same concentration of AHM (0.7M) and HNO ₃ (1.0 M) and varying temperature; 256:30°C, 227:50°C and 232: 70°	91
	Figure 3.14	Raman spectrum of 2 samples prepared at the same concentration of HNO_3 (1.0M) and temperature (50°C) and varying AHM concentrations; sample 227:0.7 M and 228:1.0 M	92
	Figure 3.15	Raman spectrum of 3 samples prepared at the same concentration of K_2MoO_4 (0.28 M) and HNO ₃ (2.0 M) and varying in temperature (sample 249:30°C, 219:50°C and 229:70°C)	94
	Figure 3.16	Raman spectrum of 3 samples prepared at the same concentration of K_2MoO_4 (2.0 M) and HNO ₃ (2.0 M) and varying temperature (sample 250: 30°C, 245: 50°C and 244: 70°C)	95
	Figure 3.17	Raman spectrum of 2 samples prepared at the same concentration of HNO ₃ (2.0 M) and temperature (30 °C) and varying K ₂ MoO ₄ concentration (sample 249: 0.28 M and 250: 2.0 M)	97
	Figure 3.18	Raman spectrum of 3 samples prepared at the same concentration of	99

vi

	Li_2MoO_4 (2.0 M) and HNO ₃ (2.0 M) and varying temperature (sample 250: 30°C, 245: 50°C and 244: 70°C)	
Figure 3.19	Raman spectrum of 3 samples prepared at the same concentration of Na_2MoO_4 (2.0 M) and HNO ₃ (2.0 M) and varving temperature	100
	(sample 252: 30°C, 226: 50°C and 231: 70°C)	
Figure 3.20	High resolution image and Fourier Transform of the crystalline part of samples prepared by decreasing pH (acid concentration; 0.4M)	103
	from ammonium cation (sample 1)	
Figure 3.21	Supramolecular structure revealed from XRD and TEM investigation, plot of intensity as a function of d-spacing (sample 1)	105
Figure 3.22	Electron micrograph and HRTEM image of samples prepared by decreasing pH (varied acid concentration at 1.0 M) from ammonium	107
	cation (sample 5)	
Figure 3.23	Electron micrograph, SAED, and HRTEM of samples prepared at varying temperature (30°C) from ammonium cation (sample 256)	110
Figure 3.24	Electron micrograph, electron diffraction pattern and HRTEM images of samples prepared at varving temperature (50°C) from	113
	ammonium cation (sample 227)	
Figure 3.25	Electron micrograph, electron diffraction and HRTEM of samples	115
-	prepared by varied temperature (70°C) from ammonium cation (232)	
Figure 3.26	SEM images of samples prepared by varying acid concentration;	117
	sample 5 (1.0 M, on the left) and sample 1 (0.4 M, on the right)	
Figure 3.27	SEM images of samples prepared by varying temperature, sample 256 (30°C, on the left) and sample 232 (70°C, on the right)	119
Figure A1	XRD pattern of 2 samples prepared at the same concentration of	144
	AHM (1.0M) and temperature at 30°C and varying in HNO3	
	concentration; sample 257:1.0M, and sample 258:5.0M. The XRD	
	patterns are vertically shifted for better visualisation	
Figure A2	XRD pattern of 2 samples prepared at the same concentration of	144
	AHM (0.7M) and temperature at 50°C and varying the HNO ₃ concentration; 227: 1.0 M and 225: 2.0 M.	
Figure A3	XRD pattern of 2 samples prepared at the same concentration of	145
- iguite no	HNO_3 (1.0M) and temperature at 30°C and varying in molybdenum	145
	concentration; 0.7M (256) and 1.0M (257)	
Figure A4	XRD pattern of 2 samples prepared at the same concentration of	145
	HNO_3 (1.0M) and temperature at 50°C and varying in AHM	
	concentration; sample 227: 0.7 M and 228: 1.0 M	
Figure A5	XRD pattern of 2 samples prepared at the same concentration of	146
0	AHM (1.0 M) and HNO3 concentration (5.0 M) and varying in	
	temperature; sample 258: 30°C, 248: 50°C).	
Figure A6	XRD pattern of 3 samples prepared at the same concentration of	146
	K_2MoO_4 (1.0 M) and HNO ₃ concentration (5.0 M) and varying in	
	temperature; sample 253: 30°C, 246: 50°C and 243:70°C)	
Figure A7	XRD pattern of 2 samples prepared at the same concentration of K MOQ (1000) and target at 2000 and arguing in UDIO	147
	K ₂ MoO ₄ (1.0M) and temperature at 30°C and varying in HNO ₃	
Figure A9	concentration; sample 250:2.0M, and sample 253:5.0M	1.45
Figure A8	XRD pattern of 2 samples prepared at the same concentration of K_2MoO_4 (2.0 M) and temperature, 50°C and varying in HNO ₃	147
	K_2 MoO ₄ (2.0 M) and temperature, 50°C and varying in HNO ₃ concentration; 245: 2.0 M and 246: 5.0 M	
	Concentration, 243. 2.0 M and 240. 3.0 M	

vii

Figure A9	XRD pattern of 2 samples prepared at the same concentration of K_2MoO_4 (2.0 M) and temperature, 70°C and varying in HNO ₃ concentration; 244: 2.0 M and 243: 5.0 M	148			
Figure A10	Concentration, 249: 2.0 M and 253, 5.0 M XRD pattern of 2 samples prepared at the same concentration of 148 K_2MOQ_4 (0.28 M) and temperature, 30°C and varying in HNO ₃ concentration, 249: 2.0 M and 254: 5.0 M				
Figure A11	XRD pattern of 2 samples prepared at the same concentration of K_2MoO_4 (0.28 M) and temperature, 50°C and varying in HNO ₃ concentration; 219: 2.0 M and 247: 5.0 M	149			
Figure A12	XRD pattern of 2 samples prepared at the same concentration of K_2MoO_4 (0.28 M) and temperature, 70°C and varying in HNO ₃ concentration; 229; 2.0 M and 233; 5.0 M	149			
Figure A13	XRD pattern of 2 samples prepared at the same concentration of HNO_3 (2.0 M) and temperature, 30°C and varying in K_2MoO_4 concentration; 249: 0.28 M and 250: 2.0 M	150			
Figure A14	XRD pattern of 2 samples prepared at the same concentration of HNO_3 (2.0 M) and temperature, 50°C and varying in K_2MoO_4 concentration; 219: 0.28 M and 245: 2.0 M	150			
Figure A15	XRD pattern of 2 sets of samples prepared at the same concentration of HNO ₃ (2.0 M) and temperature, 70° C and varying in K ₂ MoO ₄ concentration; 229: 0.28 M and 244: 2.0 M	151			
Figure A16	XRD pattern of 2 sets of samples prepared at the same concentration of HNO ₃ (5.0 M) and temperature, 30° C and varying in K ₂ MoO ₄ concentration; 254: 0.28 M and 253: 2.0 M	151			
Figure A17	XRD pattern of 2 sets of samples prepared at the same concentration of HNO ₃ (5.0 M) and temperature, 50°C and varying in K ₂ MoO ₄ concentration; 247: 0.28 M and 246; 2.0 M	152			
Figure A18	XRD pattern of 2 sets of samples prepared at the same concentration of HNO ₃ (5.0 M) and temperature, 70°C and varying in K ₂ MoO ₄ concentration; 233: 0.28 M and 243: 2.0 M	152			
Figure A19	XRD pattern of 3 sets of samples prepared at the same concentration of HNO ₃ (5.0 M) and K ₂ MoO ₄ concentration (2.0 M) and varying in temperature; 253: 30°C, 246: 50°C, 243:70°C	153			
Figure A20	XRD pattern of 2 sets of samples prepared at the same concentration of Na ₂ MoO ₄ (2.0 M) and temperature (30°C) and varying in HNO ₃ concentration; 252: 2.0 M and 255: 5.0 M	153			
Figure B1	Raman spectrum of 2 sets of samples prepared at the same concentration of AHM (1.0M) and temperature at 30°C and varying in HNO ₃ concentration; sample 257:1.0M, and sample 258:5.0M	154			
Figure B2	Raman spectrum of 2 sets of samples prepared at the same concentration of AHM (0.7M) and temperature at 50°C and varying in HNO ₃ concentration; 227: 1.0 M and 225: 2.0 M	154			
Figure B3	Raman spectrum of 2 sets of samples prepared at the same concentration of HNO ₃ (1.0M) and temperature at 30°C and varying in molvbdenum concentration; 0.7M (256) and 1.0M (257)	155			
Figure B4	Raman spectrum of 2 sets of samples prepared at the same concentration of HNO ₃ (1.0M) and temperature at 50°C and varying in AHM concentration; sample 227: 0.7 M and 228: 1.0 M	155			
Figure B5	Raman spectrum of 2 samples prepared at the same concentration of AHM (1.0 M) and HNO ₃ concentration (5.0 M) and varying in	156			

viii

Figure B6	temperature; sample 258: 30° C, 248: 50° C Raman spectrum of 2 samples prepared at the same concentration of K ₂ MoO ₄ (1.0M) and temperature at 30° C and varying in HNO ₃ concentration; sample 250:2.0M, and sample 253:5.0M	156
Figure B7		157
Figure B8	Raman spectrum of 2 samples prepared at the same concentration of K_2MoO_4 (2.0 M) and temperature, 70°C and varying in HNO_3 concentration; 244: 2.0 M and 243: 5.0 M	157
Figure B9	Raman spectrum of 2 samples prepared at the same concentration of K_2MoO_4 (0.28 M) and temperature, 30°C and varying in HNO ₃ concentration; 249: 2.0 M and 254: 5.0 M	158
Figure B10	K_2MoO_4 (0.28 M) and temperature, $50^\circ C$ and varying in HNO_3 concentration; 219: 2.0 M and 247: 5.0 M	158
Figure B11	Raman spectrum of 2 samples prepared at the same concentration of K_2MoO_4 (0.28 M) and temperature, 70°C and varying in HNO ₃ concentration; 229: 2.0 M and 233: 5.0 M	159
Figure B12	Raman spectrum of 2 samples prepared at the same concentration of HNO ₃ (2.0 M) and temperature, 50°C and varying in K_2MoO_4 concentration; 219: 0.28 M and 245: 2.0 M	
Figure B13	Raman spectrum of 2 samples prepared at the same concentration of HNO ₃ (2.0 M) and temperature, 70°C and varying in K_2MoO_4 concentration; 229: 0.28 M and 244: 2.0 M	
Figure B14	HNO_3 (5.0 M) and temperature, 30°C and varying in K_2MoO_4 concentration, 254: 0.28 M and 253: 2.0 M	160
Figure B15	Raman spectrum of 2 samples prepared at the same concentration of HNO ₃ (5.0 M) and temperature, 50°C and varying in K_2MoO_4 concentration, 247: 0.28 M and 246: 2.0 M	161
Figure B16	Raman spectrum of 2 samples prepared at the same concentration of HNO ₃ (5.0 M) and temperature, 70°C and varying in K_2MoO_4 concentration; 233: 0.28 M and 243: 2.0 M	
Figure B17	Raman spectrum of 3 samples prepared at the same concentration of HNO_3 (5.0 M) and K_2MOO_4 concentration (2.0 M) but varied in temperature; 253: 30°C, 246: 50°C, 243:70°C	162
Figure B18	Raman spectrum of 2 samples prepared at the same concentration of Na_2MoO_4 (2.0 M) and temperature (30°C) but varied in HNO_3 concentration; 252: 2.0 M and 255: 5.0 M	162

ix

Index of Tables

Table Table 3.1	Title XRD phase identification of samples prepared using ammonium as	Page 72
Table 3.2 Table 3.3	counter-ion Results of type of 2-peaks fitting, major peak Results of type of 2-peaks fitting, minor peak	76 77
Table 3.4 Table 3.5	Possible references of molybdenum oxide Comparison of unit cell parameter of samples with reference	78 79
Table 3.6	Phase identification of samples prepared using potassium as counter-ion	79 84
Table 3.7	Phase identification of samples prepared using lithium and sodium as counter ions	89
Table 3.8	Raman phase identification of samples prepared using ammonium as counter-ion	93
Table 3.9	Phase identification of samples prepared using potassium as counter-ion	98
Table 3.10	Phase identification of samples prepared using lithium and sodium as counter ions	101

-

List of Abbreviations

	XRD	X-ray Diffraction
	TEM	Transmission Electron Microscopy
	SEM	Scanning Electron Microscopy
	TG	Thermal Gravimetry
	DSC	Differential Scanning Calorimetry
	HRTEM	high resolution Transmission Electron Micrograph
	SAED	Selected Area Electron Diffraction
	EDX	Electron Diffraction X-ray
	PSD	Position Sensitive Detector
	ICSD	International Crystal Single Diffraction
``	PDF	Powder Diffraction File
	FWHM	Full Widht at Half Maximum
	NH4 ⁺	Ammonium
	Li	Lithium
	Na	Sodium
	K	Potassium
	MoO ₃	Molybdenum Trioxide
	HNO ₃	Nitric Acid
	AHM	Ammonium Heptamolybdate
	Na ₂ MoO ₄	Sodium Molybdate
	Li ₂ MoO ₄	Lithium Molybdate
	K ₂ MoO ₄	Potassium Molybdate
	M	Molar (mol/l)

-