Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xi</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>xii</td>
</tr>
<tr>
<td>SYMBOLS AND UNITS</td>
<td>xiii</td>
</tr>
</tbody>
</table>

1.0 INTRODUCTION

1.1 Objectives 2

2.0 LITERATURE REVIEW

2.1 Phytoplankton 4

2.1.1 Algae as environmental indicators 4

2.2 Factors that influence phytoplankton distribution 5

2.2.1 Natural factors 5

2.2.1.1 Climate 6

2.2.1.2 Geology and physiography of the catchment area 7

2.2.1.3 Hydrology 7

2.2.2 Anthropogenic factors 7
Table of Contents

2.3 Freshwater phytoplankton distribution patterns 8
2.3.1 Vertical distribution 8
2.3.1.1 Non-motile, negatively buoyant algae 9
2.3.1.2 Positively buoyant algae 10
2.3.1.3 Neutral buoyant algae 10
2.3.2 Horizontal distribution 10
2.3.2.1 Small-scale patchiness 11
2.3.2.2 Large-scale patchiness 11
2.3.2.3 Advective patchiness 11
2.3.3 Temporal variations in abundance and composition of phytoplankton 11
2.3.4 Periodicity and change in phytoplankton composition 12
2.3.4.1 Seasonal periodicity of phytoplankton 12
2.3.5 Longer-term floristic changes 13
2.3.6 Seasonal succession 14
2.3.7 Grazing 16
2.4 Features of a lake controlling the production of phytoplankton 17
2.4.1 Thermal stratification and temperature 17
2.4.2 Light 17
2.5 Photosynthetic activity of phytoplankton 19
2.5.1 Light-limited photosynthesis 19
2.5.2 Light-saturated photosynthesis 19
2.5.3 Light-inhibited photosynthesis 19
Table of Contents

2.5.4 The effects of temperature 20
2.5.5 The effect of carbon supply 20

2.6 Nutrient requirements 21
 2.6.1 Nutrient uptake 21
 2.6.2 Phosphorus availability 22
 2.6.3 Nitrogen availability 23
 2.6.4 Silicon availability 24
 2.6.5 Other nutrients 24

2.7 Eutrophication 25
 2.7.1 Natural eutrophication 27

2.8 Wetlands 27

2.9 Putrajaya wetlands and lake 29
 2.9.1 Water quality 31

2.10 Studies of phytoplankton in the lakes 32
 2.10.1 Tasek Bera 32

2.11 Putrajaya lake management 33
 2.11.1 Catchment management and monitoring 34
 2.11.2 Wetlands management and monitoring 34

3.0 MATERIALS AND METHODS 36

3.1 Location of study area 36

3.2 Sampling occasions and period 36
 3.2.1 Sampling procedure 41
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>Physical and chemical parameters</td>
<td>41</td>
</tr>
<tr>
<td>3.4</td>
<td>Phytoplankton sampling</td>
<td>42</td>
</tr>
<tr>
<td>3.5</td>
<td>Laboratory analysis</td>
<td>42</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Chlorophyll-a analysis</td>
<td>42</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Chemical analysis</td>
<td>43</td>
</tr>
<tr>
<td>3.5.2.1</td>
<td>Dissolved orthophosphate</td>
<td>43</td>
</tr>
<tr>
<td>3.5.2.2</td>
<td>Ammonia</td>
<td>44</td>
</tr>
<tr>
<td>3.5.2.3</td>
<td>Silica as SiO₂</td>
<td>45</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Identification and quantification of phytoplankton</td>
<td>46</td>
</tr>
<tr>
<td>3.5.3.1</td>
<td>Microscope calibration</td>
<td>46</td>
</tr>
<tr>
<td>3.5.3.2</td>
<td>Phytoplankton counting techniques</td>
<td>46</td>
</tr>
<tr>
<td>3.6</td>
<td>Data Analysis</td>
<td>47</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Shannon-Weiner Diversity Index</td>
<td>47</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Margalef’s Species Index</td>
<td>48</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Sorensen’s Coefficient</td>
<td>48</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Frequency</td>
<td>48</td>
</tr>
<tr>
<td>3.6.5</td>
<td>Statistical Analysis</td>
<td>49</td>
</tr>
<tr>
<td>4.0</td>
<td>RESULTS</td>
<td>51</td>
</tr>
<tr>
<td>4.1</td>
<td>Field physical and chemical parameters</td>
<td>51</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Temperature</td>
<td>51</td>
</tr>
<tr>
<td>4.1.2</td>
<td>pH</td>
<td>51</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Conductivity</td>
<td>54</td>
</tr>
</tbody>
</table>
Table of Contents

4.1.4 Dissolved oxygen 54
4.1.5 Secchi depth 54
4.1.6 Dissolved orthophosphate 58
4.1.7 Ammoniacal nitrogen 58
4.1.8 Silica 58

4.2 Biotic variables 62
 4.2.1 Checklist of phytoplankton and abundance 62
 4.2.2 Cell density 62
 4.2.3 Species richness 74
 4.2.4 Shannon-Wiener's Index 74
 4.2.5 Chlorophyll-a 74

4.3 Frequency 78

4.4 Two-way ANOVA 78

4.5 Multiple regression 78

4.6 Cluster analysis 79

5.0 DISCUSSION 83
 5.1 Field physical and chemical parameters 83
 5.2 Biotic variables 85
 5.3 Effect of environmental parameters on biotic variables 88
 5.4 General discussion 88

6.0 CONCLUSION 89

REFERENCES 90
APPENDICES 97