


THEORY

Chapter II

Crystalline and Amorphous Semiconductors
2.1 Introduction

Solids can be classified into three categories: viz. crystalline, amorphous and
polycrystalline materials. The basic arrangement of atoms in these materials differ. In
crystalline materials the atoms are arranged periodically and such a basic arrangement is
repeated throughout the entire solid. The crystalline solids have, therefore, both short-range
and long-range orders of atomic arrangements. In amorphous solids, on the other hand,
there is a lack of long range atomic arrangement and there is no regular periodic structure.

The polycrystalline solids, are composed of many small granules of the single crystal

material.
AT
\
|
|
=
(a) Crystalline (b) Amorphous (c) polycrystalline

Figure 2.1 : The three types of solids classified according to atomic arrangements.
(a)crystalline (b) amorphous is illustrated by microscopic views of the atoms
whereas (c)polycrystalline structure is illustrated by a more macroscopic view

of adjacent single crystalline regious. [1]
In this chapter, we describe the basic theories of crystalline and amorphous

semiconducting materials which we shall be using in analysing our experimental results. The

semiconducting materials can be divided into the following types:
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i. Elemental semiconductors,

ii. Compound semiconductors,

iii. Amorphous semiconductors, and

iv. Organic semiconductors

i) Elemental Semiconductors

They may be of intrinsic and extrinsic types. Intrinsic semiconduction is a property of the
pure material such as pure Silicon(Si) or pure Germanium(Ge). The basic charge carriers in
them are electrons and holes. Extrinsic semiconduction results due to the impurity additions
in the form of dopants and the process of adding these components has been called doping.
There are two different types of extrinsic semiconductions : (a) n-type in which negative
charge carriers(electrons) are dominant and (b) p-type , where the positive charge carriers
(holes) have the upper hand.

ii) Compound Semiconductors

These semiconductors are formed of elements existing on both sides of group IV of the
periodic table. The I1I-V compounds have formulas of the type MX where M is a +3 valence
element while X is a +5 valence element. Similarly II - VI compounds combine a +2 valence
element with a +6 valence element. Pure III-V and II-VI compounds are intrinsic
semiconductors. They can be made extrinsic by suitable dopings in a fashion similar to those
used for elemental semiconductors.

iii) Amorphous Semiconductors

This semiconductor is noncrystalline in nature. The various amorphous semiconductors

which are available are : Si , Ge , Se , Te, GeSe etc. The amorphous silicon is often prepared
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by the decomposition of silane(SiH.). The process is often incomplete and “amorphous
silicon” in reality is a silicon-hydrogen alloy. [2]
iv) Organic Semiconductor
This kind of a semiconductor is neither a covalently bonded nor ionically bonded but a
molecular crystal. The central problem in the study of organic semiconductors is to
understand how electric charge enters and is transported through the molecular crystal
which are often highly disordered on atomic and molecular scales. They may also have
applications analogous to other types of semiconductors.
2.2 Crystalline Semiconductors

In extremely “pure” form, Germanium and Silicon exhibits intrinsic conductivity over
a wide temperature range. By intrinsic conductivity , we mean the conductivity generated by
electrons and holes which are present inside the solid. To understand the nature of electrical
conductivity of such a pure material , it is important to realise that the crystal structures of
Germanium and Silicon are the same as that of the diamond (crystalline carbon). These
belongs to the group IV of the periodic table. These are also referred to as valence crystals,
for reasons which will soon become clear. The essential features of the so called diamond
structure crystals appear in Fig. 2.2 . Each of the atom is surrounded by four nearest
neighbours as shown in the figure. A covalent bond is formed by pairing an electron of each
atom with each one of its four neighbours. These covalent bonds are the important cement
that holds together the atoms of the diamond crystal structure. These bonds are also
responsible for electrical behaviour of the crystal [3].

Semiconductors in their natural crystalline forms are known as intrinsic. If traces of

certain chemical impurities are introduced into them, they give arise to energy levels lying
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within the energy gaps. Such impurities are able to control their conductivities over wide
limits. Their temperature dependence of conductivities distinguishes them from metals and

insulators.

Figure 2.2 : Diamond Crystal Structure).
2.2.1 Band Structure of Crystalline Semiconductors

The electronic energy levels of individual atoms no longer represents the energy
levels of electrons inside a crystal. Once a crystal is formed, it is found that the energy levels
of the inner-shell electrons are not affected appreciably but those of the outer-shell electrons
are, because they are shared by more than one atom in the crystal. The new energy levels of
the outer-shell electrons may however be determined by making use of wave mechanics. As
a result of such an attempt, it has been found out that the coupling amongst outer-shell
electrons of atoms results in a band of closely spaced electronic levels. Before undertaking

such an analysis, the qualitative discussion of the formation of energy bands in a



THEORY

semiconductor crystal has to be done. By considering Si or Ge crystal, the outer sub-shell of
such an element is known to contain 2s and 2p electrons. To form a crystal of N atoms, it
should be possible to vary the spacing between any two of them. When the atoms are
situated very far apart, the electrostatic interaction among them is negligible. In such a case
the electronic energy levels of isolated atoms will merge with one another. The electronic
energy levels of the crystal will then be the same as those of the isolated atoms. If the inner-
shell are completely ignored there will be 2N electrons completely filling the 6N p-levels
above them. This is illustrated in fig. 2.3 [3]. If the interatomic spacing is gradually
decreased, the forces exerted by atoms on their neighbours are no longer negligible, the
electronic wave functions of individual atoms overlap and the crystal becomes a single
electronic unit which must obey Pauli’s exclusion principle. As a result, 2N electronic states
belonging to the same energy levels will split into a band. The difference between any two
energy levels in a band is very small. Such a group of closely spaced energy levels has been
illustrated in fig. 2.3. The 2N states in the lower band are completely filled with 2N s-
electrons. The upper band of 6N states are however filled partially with 2N p-electrons.
When the atomic distance becomes too small, the bands may overlap as shown in fig. 2.4.
This will lead to the 6N upper states merging with 2N lower ones giving rising to a total of
8N allowed states. Each atom of the crystal may then be presumed to contribute four
electrons to the lower band. These electrons are then capable of moving freely inside the
crystal and the band in which these electrons move is termed the valence band. When the
atomic distance in the crystal is reduced beyond the stage, the band overlapping will be
enhanced and the interaction amongst atoms becomes extremely strong. At the lattice

spacing, shown in fig. 2.4, the valence band filled with 4N electrons is separated by a
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forbidden band gap of width E, from an empty band consisting of another 4N vacant state at
T = 0°K. The upper vacant band is termed the conduction band and the lower one is the
valence band [3]. The energy bands of solids have been studied theoretically by a variety of
methods. For semiconductors, the three methods most frequently used are:

i. Orthogonalized Plane Wave (OPW) Method,

ii. Pseudopotential Method, and

iii.k.P. Method

The fig. 2.5 shows the results of studies of the energy band structures of Ge, Si and GaAs.
Notice that for any semiconductor, there is forbidden energy region in which allowed states
cannot exist under any circumstances. Energy bands are only permitted above and below
this energy gap. The upper bands are called conduction bands and the lower bands are the
valence bands. The separation between them is the energy gap, which is the most important
parameter in semiconductor physics. Fig. 2.6 depicts the simplified band structures of

semiconductor.

At room p and normal ph the values of band gaps are 0.66 eV
for Ge , 1.12 eV for Si and 1.42 eV for GaAs. These values are applicable to high purity
materials. For heavily doped materials, band gaps become smaller. Near room temperatures,
the band gaps of Ge and GaAs increase with pressure while that of Si decreases with
pressure. In ideal semiconductors, there is no state within the energy gaps. But in real

problems, the situation is much different. This is due to several reasons such as;

i. A icond crystal obtained from industry is not a perfect crystalline and has a

number of point defects, different impurities and crystal defects.
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11. The semiconductor crystal will contain surface states due to incomplete covalent bonds

and other defects.

The presence of these defects is taken care of by placing appropriate energy states within

the energy gaps of an otherwise perfect crystal [4].
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Figure 2.5: Energy-band structures of Ge , Si and Gads, where Eg is the energy band gap.
Plus(+) signs indicate holes in valence bands and minus(-) signs indicate
electrons in the conduction bands.
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Figure 2.6: Typical simplified band structure of a semiconductor
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2.2.2 Electrical Properties

The operation of semiconductor devices depends upon electrons and holes. To
discuss their electronic properties, the Si crystal has been taken as an example. Like most
other semiconductors, it crystallises in the diamond structure. The bonds in the crystal are of
the shared-electron or covalent type. The electrons involved in a particular bond have their
spins oppositely directed. The situation prevailing in semiconductors is different from that in
a metal where the outer-shell electrons form a cloud that permeates the entire solid. At room
temperatures some energy is always associated with the lattice in the form of atomic
vibrations which are capable of breaking some electronic bonds. An electronic bond may
also be broken by a light quantum. The electrons so liberated by heat or light are free to
wander about in the conduction band like free electrons in metals. The second consequence
of bond breaking of electrons is the creation of a vacancy or a hole in the valence structure.
A valence electron from any neighbouring site may then jump over to fill the original
vacancy by virtue of its finite thermal energy, leaving another vacancy or a hole in its place
during the process. As this may occur repeatedly, the holes may appear to wander about in
the valence band like the electronic motion in the conduction band. The single event of bond
breaking then gives arise to both electron and hole conduction in a semiconductor.

The important electrical parameters of crystalline semiconductors are resistivity,
mobility and carrier-lifetime. Since the electrical properties directly affect the device
characteristics , great attention has been paid to their evaluations. The resistivity type (n or
p) is determined by the thermoelectric probe method in which the sign of the thermo-emf
determines whether the material is n or p type. In the semiconductor industry the most

widely used technique for resistivity measurement is the four-point probe. The usual
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geometry of the probes is linear as shown in fig. 2.7 , with the probes spaced typically Imm
apart. If the probes are uniformly spaced (S = S, =S; = S3 ), as usually the case , and for
probes resting on a semiconductor-infinite medium , the resistivity(p) is given by ;

27SV
p==— @D

Equation 2.1 must be corrected for finite geometry of the semiconductor samples. For an
arbitrarily shaped sample the resistivity is given by,

_ ZIrSI'FV @2

where F is the correction factor appropriate to the sample geometry. The main advantage of
this technique is its simplicity and for this reason , it is also employed for resistivity mapping
of a semiconductor wafer. The damages introduced when the probes touch the surface is
undesirable. Contact less resistivity measurements have also been explored in recent years.
Among the various optical and electrical methods of resistivity measurement, only the eddy

current method has found practical applications[5].
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Sample

Figure 2.7 : Linear four - point resistivity probe.

The temperature dependence of semiconductor conductivity distinguishes
semiconductors from metals and insulators. To analyse the variation of semiconductor
conductivity as a function of temperature , the semiconductor conductivity can be expressed
as;

0n(T) = qua(T)n(T) (23)
The mobility p.(T) to be determined by the lattice scattering may be expressed as ;
mm=4 e

T:
The carrier density in “n” type of semiconductor can be written as ;

—-(E -
n(T) = A, T*? exp[(—;TE/—)J 2.5)
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On combining (2.3), (2.4) and (2.5) we get,
oy = A exp| E=E) 26
kT '

But in doped semiconductors the Fermi level position is not independent of temperature. If
we ignore the variations of E¢ with T , & according to equation (2.6) essentially exhibits an
exponential variation up to about 60°K. With further rise in temperature , the supply of
electrons from the donor states decreases. Around room temperatures, therefore , n deviates
from its exponential dependence and levels of at n~Ny. In that case , the semiconductor

conductivity according to eqn.(2.3) is given by ;

oM = a2 N @7
T?

Thus when the carrier density has stopped increasing , o(T) according to eqn.(2.7) must
drop off with an increse in T. If the temperature of the semiconductor is increased
sufficiently so that the direct excitation of carriers from the valence band to the conduction
band takes place, the specimen tends to become intrinsic. It then starts displaying a
characteristic exponential dependence as expressed by ;

Gi = qHatHp)Ni

E,
61 = qlua(T)+ip(DI(Ne No) Pexp [ k;] (28)

The variation of Inc as a function of 1/T is shown in fig. 2.8 [6]. The conductivity
measurement cannot reveal which carrier is in majority. However , this information can be
obtained from the Hall Effect measurement, which is also the basic tool for the

determination of mobility. A static magnetic field applied directly perpendicular to the
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direction of the current flow produces a force on the flowing change in a direction
perpendicular to both. When this happens electrons, and holes will be separated by opposite
force acting on them. They in will turn produce an electric field (Ex) which depends on the
cross product of the magnetic intensity, H, and the current density, J. This fact is
demonstrated in fig. 2.9.
Eu=RJxH 2.9

where R is called the Hall coefficient. Now let us consider a bar of a semiconductor, having
dimension, x, y and z. Let J is directed along x and H along z then Ey will be along y, as

shown in fig. 2.10. We could then write,
V, 1Y V.Z
R=|-& =|-H= 2.10
] eo
where Vyis the Hall voltage appearing between the two surfaces perpendicular to y and z. In

general , the Hall voltage is not a linear function of the magnetic field , i.e. the Hall
coefficient is not generally a constant , but a function of the applied magnetic field.
Consequently , the interpretation of the Hall voltage is not usually a simple matter. However
it is easy to calculate this Hall voltage if it is assumed that all carriers have the same drift
velocity. We will do this in two steps (a) by assuming that carriers of only one type are
present , and (b) by assuming that carriers of both types are present.

(a) Hall Effect for One Type of a Carrier :

Metals and degenerate semiconductors are the examples where only one type of a carrier
dominates. The magnetic forces on the carrier is En = q (v x H) and is compensated by the
Hall field Fy = q Ex, where v is the drift velocity of the carriers. Assuming the direction of

various vectors as before, one finds,
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vxH=Ey (2.11)
From simple reasoning , the current density J is the charge q multiplied by the number of
carriers traversing unit area in unit time , which is equivalent to the carrier density multiplied
by the drift velocity i.e. ] = qnv. By putting these values in equation (2.10) , we get ,

E, VH 1
=— 2.12
JH gnvH ngq @12)

From this equation, the sign of R would be positive for p-type and negative for n-type.

When one carrier dominates , the conductivity of the material is
G =nqu (2.13)
where  is the mobility of the charge carriers. Thus ,
u=Ro (2.14)

Equation 2.14 provides a method for experimental measurement of mobility in unit em’
volt™ sec™.
(b) Hall Effect for Two Types of Carriers

Intrinsic and lightly doped semiconductors are the two examples of this type. In such
cases , the quantitative interpretation of Hall Coefficient is more difficult since both types of
carriers contributes to the Hall field. It is also clear that for the same electric and the
magnetic field directions , the Hall voltage for p-carriers will be of opposite sign from that of
n-carriers. As a result , both mobilities enter into the calculations of Hall coefficient and a

weighted average is the result , which is given by ,

R= _HaP— KT (2.15)
2(p4p = Ha1)
where i, and p, are the mobilities of electrons and holes respectively , p and n respectively

are the densities of holes and electrons. Since the mobility p, and i, which are not constants
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but functions with temperature (T), the Hall coefficient given by the equation (2.15), is also

a function of temperature. In general p, > W, so that the inversion in the sign of the Hall
coefficient may happen only if p > n. Thus : “Hall Coefficient inversion™ is characteristic
only of p-type semiconductors. At point of zero Hall coefficient , it is possible to determine

the ratio of mobility and their relative concentrations. [7]

i-ragion
5
=
v
\
\ n-region
1
\
i
\
v
\
\ [E=Es
j mu(_‘s) tan-iffes )
™ 2k S
S N
TT
Figure 2.8 : Variation of Inc versus T




THEORY

Figure 2.9 : Carrier Separation Due To A Magnetic Field
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Figure 2.10 : Sample For Studying Hall Effect
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2.2.3. Optical Properties

Optical measurements constitute one of the most important means of determining the
band structure of semiconductors. Photon induced electronic transitions can occur between
different bands, which lead to the determination of the energy gap, or within the same band
in the form of the free carrier absorption. Optical measurements can also be used to study
lattice vibrations. The transmission coefficient(T) and the reflection coefficient(R) are the

two important quantities generally measured. For normal incidence they are given by,

T= % (2.16)

(1- R:)exp(#)

(1—n’)+K’
R=+—1 (2.17)
+K

where A is the wavelength, n the refractive index, K the absorption constant and x the
thickness of the sample. The absorption coefficient per unit length is given by;

47K

a=s @13

By analysing the T-A and/or R-\ data at normal incidence , or by making observations of R
or T for different angles of incidences , both n and K can be obtained and related to the
transition energy between bands. Near the absorption edge the absorption coefficient can be
expressed as ,

a=(hv-Ep) (2.18)
where hv is the photon energy , E, is the band gap and v is a constant. In the one electron

approximation y equals %2 and 12 for allowed direct transitions and forbidden direct

20
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transitions , respectively ( with Kmin = Kmax as transition (a) and (b) shown in fig. 2.11.) ; the
constant y equals 2 for indirect transitions (transition (c) in fig. 2.11) , where phonons are
involved. In addition there is a bound electron - hole pair (exciton) transition with the energy
levels in the band gap which moves through the crystal lattice as a unit. Near the absorption
edge , where the values of (hv - E,) becomes comparable with the binding energy of an
exciton , the Coulomb interaction between the free hole and the electron must be taken into
account. When hv < E; the absorption merges continuously into the absorption caused by
the higher excited states of the exciton. When hv >> E, , higher energy bands participate in
the transition process and complicated band structures are reflected in the absorption

coefficient.[8]
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Figure 2.11: Optical Transitions : (a) and (b) direct tr ; (c) indirect tr
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2.2.4. Structural Properties

The application of the X-ray diffraction to the surface characterisation requires some
considerations of the definition of the material surface. The theory of X-ray scattering grew
up in several directions. The diffraction law which has been studied in the X-ray diffraction
is the Bragg’s law. The glancing angle of the incidence for X-ray reflection, 8, is given by;

nA=2dsin® (2.20)

where A is the wavelength, n is the order of the beam, d is the spacing between lattice
planes. It also has been pointed out there, that if the scattering material is distributed such
that if n = 1, the relation simplifies to A = 2 d sin 0. For a single crystal, diffraction of
extraneous radiation from tube contaminants can give peaks comparable in intensity to the
thin films peaks. After obtaining the diffraction pattern of the film and separating the peaks
due to the film from those due to a substrate, a peak-shift analysis will give information on
the residual strain and a combination of peak shift and peak broadening data will give
informations on microstrain, faulting probability and particle size
2.3 Amorphous Semiconductors
Amorphous semiconductors are non-crystalline materials. They lack long-range periodic
ordering of their constituent atoms. Unlike amorphous metals, amorphous semiconductors
do not exist in closed-packed forms, but rather they contain covalently bonded atoms
arranged in an open network with correlations in ordering up to the third or fourth nearest
neighbours. The short range order is directly responsible for the observable semiconductor
properties such as optical absorption edge and activated electrical conductivity[10].
Amorphous semiconductors can be broken down into ionic and covalent materials. The ionic

materials which have been studied most are the halides and oxide glasses, particularly the

22
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transition metal oxide glasses. Pure materials have just positional disorders and when there is
a presence of impurities the transition metal ions will possess some degree of electronic

disorder. These types of materials are prepared by rf-sputtering technique. The covalent

amorphous ductors can be classified into two types such as, purely elemental

materials and binary materials. This pure elemental material has perfect covalent bonds and
the binary materials are also covalently bonded but they are multicomponent borides,
arsenides and chalcogenide glasses. The significance of these covalent amorphous
semiconductors are that, they possess compositional as well as positional disorders. The
amorphous semiconductors are surrounded by a tetrahedron of four other atoms with an
average separation essentially equal to that in the corresponding crystal. Deposited
amorphous Ge and Si are far from ideal, and contain many voids within the structure. These
voids will lead to the interior dangling bonds and they can dominate the electrical properties
of amorphous materials just as vacancies or impurities can control the transport properties of
crystalline materials. These voids can be made to disappear however by annealing the
ambrphous films below the crystallisation temperature[11].

A distinction should be made between amorphous and polycrystalline materials.
Polycrystalline semiconductors are composed of grains with each grain containing a periodic
array of atoms surrounded by a layer of interconnective or boundary atoms. For smaller and
smaller grains, i.e; microcrystallites, the surface layer of each grain contains a larger and
larger numbers of atoms relative to the periodically arrayed interior atoms. Eventually for
small enough grains, the distinction between the interior and surface is lost and the concept
of microcrystallites with a definable periodic region loses its meaning. While attempts have

been made to model amorphous semiconductors as microcrystalline , it is now generally
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accepted that network models are more applicable [12]. These amorphous film are
commonly obtained by one of four main methods: such as vapour deposition, sputtering in
argon, electrolysis of solutions of materials such as GeCl, and by means of a glow discharge
from silane(SiH,) or germane(GeH,) gaseous.
2.3.1. Band Structures of Amorphous Semiconductors

Amorphous semiconductor materials are not only characterised by extended states as
in crystalline materials but also by localised states due to slight different magnitude of the
bond angle and the length in such materials. It is also not easily doped to change its
conductivity while it is difficult to identify whether the conduction is due to the intrinsic
carriers or extrinsic mobile carriers. Based on the Anderson’s theory , Mott argued that the
spatial fluctuation in the potential caused by the configurational disorder in amorphous
materials may lead to the formation of localised states, which do not occupy all the different
energies in the band, but form a tail above and below the normal band. According to Mott’s
postulate , there should be a sharp boundary between the energy ranges of extended and
localised states. These states are called localised in the sense that an electron placed in such
a region will not diffuse at zero temperature to other regions with corresponding potential
fluctuations. The concept of localised states in the band tails is used to propose several band
models of amorphous semiconductors. Fig. 2.12 illustrates schematically the main features

of the various models.
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Figure 2.12 : Schematic density of states diagrams for amorphous semiconductors. (a)The
Cohen-Fritzsche-Ovshinsky model, (b) The Davis- Mott model (c) Modified Davis-Mott
model (d) a “real” glass with defect states.
(a) The Cohen-Fritzsche-Ovshinsky (CFO) model

The CFO model shown in fig. 2.12(a) , assumes that the tail states extend across the
gap in a structureless distribution. This gradual decrease of the localised states destroys the
sharpness of the conduction and valence band edges. In this model the tail, the conduction
and the valence bands overlap , leading to an appreciable density of states in the middle of
the gap.
(b) The Davis - Mott Model

According to Davis and Mott , the tails of localised states should be narrow and should

extend a few tenths of an electron volt into the forbidden gap. The existence of a band of
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compensated levels near the middle of the gap , originating from defects in the random
network , e.g. dangling bonds , vacancies , etc. Fig. 2.12(b) sketches the Davis-Mott model;
here E. and E, represent the energies which separate the ranges where the states are
localised and extended. The central band may split into a donor and a acceptor band, which
will also pin at the fermi level (fig. 2.12 c). Mott suggested that at the transition from the
extended to localised states the mobility drops by several orders of magnitude producing a
mobility edge. The interval between the energies E. and E. acts as s pseudogap and is
defined as the mobility gap. The presence of appreciable densities of different types of
structural defects is not surprising if one realises that most of the amorphous semiconductors
are prepared by fast deposition from the vapour phase or by freezing in the liquid state or by
quenching. The position of the fermi-level is largely determined by the charge distribution in
the gap states.

On the basis of the Davis-Mott model , there can be three processes leading to
conduction in amorphous semiconductors. Their relative contributions to the total
conductivity will predominate in different temperature regions. At very low temperatures
conduction can occur by thermally assisted tunnelling between states at the fermi level. At
relatively higher temperatures the carriers are excited to higher localised states of the band
tails; carriers in these localised states take part in the electric charge transport only by
hopping. At still higher temperatures carriers are excited across the mobility edges into the
extended states. The mobility in the extended states are much higher then in the localised
states[13]. Therefore the electrical conductivity measurements over a wide temperature

range are needed to study the electronic structure of an amorphous semiconductor.

26



THEORY

2.3.2. Electrical Transport Properties

To investigate and explain the electronic transport properties of amorphous
semiconductors one may start from the Davis-Mott model.
(a) D.C. Electrical Conductivity
The essential features of the Davis-Mott model for the band structure of amorphous
semiconductors are the existence of narrow tails of localised states at the extremities of the
valence and conduction bands and furthermore a band of localised levels near the middle of
the gap. These lead to three basically different channels for conduction.
i) Extended State Conduction

The conductivity of any semiconductor can be expressed as ,
o =-e[NE) u(E)kT(J(E)) dE  (221)

where f(E) is the fermi-Dirac distribution function ,

1

E-E,
1+ exp| T

fE) = (2.22)

Using relationship
FE -f(E)
[ - ) ﬂE)[ ] (2.23)

o can be written as ,

6 = ef/N(E)W(E)RE)[1-fE)]dE (224)
In the Davis-Mott model, the fermi level Eg is situated near the middle of the gap and thus
sufficiently far from E, the energy which separate the extended from the localised states, so
that Boltzman statistics can be used to describe the occupancy of states as,
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f(E) = exp[@} (2.25)

According to Mott’s view[14] , the mobility drops sharply at the critical energy E. (or E))
but at the present it is not exactly known how the mobility depends on the energy in both
the conduction regimes. In the non-degenerate case and under the assumption of a constant
density of states and constant mobility the conductivity due to electrons excited beyond the

mobility edge in to the extended states is given by ;
'(E - E/)
o = eN(E)kTu.exp 7 (2.26)

where the 1. is the average mobility. The number of electron is given by ;

n= TN(EC) exp(:(ik-TE—/)]dE

Ee

1 = N(EJKT exp|:_(L‘k;E—/)j| (227

To get and idea of the order of magnitude of . we shall follow Mott’s treatment[15]. We
define o(E.) = e N(E.) p kT. If N(Ec) = <N(E)>/3 , where <N(E)> is the average density of
states over the band , then ;

6(Ec) = e<N(Ec)>He k_}T_ (2.28)
Mott calculated the lowest value of the electrical conductivity before the start of the

activated process , i.e. just at Ec. The quantity he called the “minimum metallic

conductivity”. He derived the equation ;
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2
Omin = CONstant . [23 ] (2.29)
ha

where the constant lies in the range between 0.026 and 0.1 ; Gmiis usually of the order 200-

300Q"cm™. Taking constant = 0.026 , one finds the final mobility to be ,
1o =0.078 (hi) <N(EP>kT (230
a.

In the nearly free electron model , N(E) is given by ;

N(E) = ﬂ’
277

S (2.31)

On the other hand , the maximum energy Enma of the band , which also yields the width B of

the band , is expressed as ,

Enee = 7 andk =§ (232)

iENE)~—~ B
a

Introducing this result in the expression (2.30) yields

_ 0078¢a’B

2.33
hkT @233)

c

By taking a = 2A , B = 5 eV, one finds at room temperature that p. ~ 10 cm?V''s™. This
values correspond to a mean free path comparable to or less than the interatomic distance.
Cohen [16] suggested that the conductivity in this case would be properly described by a
diffusive Brownian-type motion. In this regime the mobility can be obtained with the help of

the Einstein’s relation,

w=-= (234
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The diffusion coefficient D may be written as ,

D=—va (2.35)

where v is the jump frequency and a , the interatomic separation. The mobility in the

Brownian-motion regime is then given by ,

ea’v
6kT

Be =

This expression yields the same temperature dependence as (2.33) derived by Mott. Since

el /KT, one expects that the expression for conductivity is of the form ,

-(E.-E))

= (237)

G =0 exp{

where o, is preexponential factor, Ec-Ex is the activation energy, k is the Boltzmann constant
and T is the experimental temperature. Mott [17] , has made an estimation of the pre-
exponential oo which is found to lie between 10 and 10° Q'em™ in most amorphous
semiconductors.

ii) Conduction in Band Tails

If the wave function are localised , so that (E) = 0 , conduction can only occur by thermally
activated hopping. Every time an electron moves from one localised states to another , it will
exchange energy with a phonon. It may be expected that the mobility will have a thermally

activated nature ,

HE )] (2.38)

Hhop = Ho exn»[ o

The pre-exponential factor o has the form ,
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1 eR?
=1y, 239
Ho= V0 4T @39

where vy is the phonon frequency and R is the distance covered in one hopping. For typical
phonon frequency Ve = 10" s and W = kT, (2.38) yields mobility of the order of 107 cm’
2y1g1 at room temperature. Comparison of this value with the one calculated for
conduction in the extended states suggests , as postulated by Mott , that the mobility may
drop by a factor of at least 100 at the energy which separates the localised states from the
non localised ones. The conductivity being an integral over all available energy states , will
depend on the energy distribution of the density of localised states. The conductivity Ghop

due to electrons can be easily expressed by the following equation.
onep = %v,,..ez R*N(E) (2.40)

(b) A.C. Electrical Conductivity

For highly resistive amorphous films which has reactant and non-reactant components it is
suggested that the alternating current (a.c.) measurement rather than the d.c. measurement
be performed because of the polarisation occurring at the electrodes due to the inability of
the mobile carriers to cross the thin film or electrode interface producing extremely small
d.c. current. Common measurements by the four probe method normally does not solve the
above mentioned problem. To reduce the error in the measurement, it is better to have an
effective area to be as small as possible. Another problem while measuring the d.c. effect is
that it does not provide overall information as compared to the a.c. counterpart. The a.c.
analysis over a frequency range is a complex plane analysis which allows the determination
of the individual component values from the reduced data obtained over a range of

frequency.
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The electrical conductivity o() is measured as a function of the frequency () of an
alternating electric field. The frequency range in the measurement extends from 10” to
10"*Hz. A difference in behaviour of o(w) is expected when conduction occurs by the
motion of charge carriers in the extended states or by hopping in the localised states. The
enhancement of a.c. conductivity is achieved through the contributions of three mechanism:
a) Transport by mobile carriers excited to the extended or non-localised states near

conduction band edge E. or valence band edge E,. No frequency dependence of the
conductivity due to the carriers in the extended states is expected up to 10’ Hz.

b) Transport by carriers into the localised states at the edge of the valence and conduction
band. Here the transport is by the “hopping” mechanism with the conductivity increasing
with frequency and temperature.

¢) Hopping transport by carriers with energies near the fermi level takes place provided the
electrons density N, is finite. The distinct different with the transport in (b) is that the
conductivity increases with the frequency and temperature[20 , 21].

The angular frequency-dependent conductivity o(®) is modified according to the
Austin-Mott formula[22] with a.c. conductivity having a frequency dependence proportional
to 10*, with exponent s ~ 0.7 - 1.0 for frequencies below 10° Hz. When the conduction
occurs by the phonon-assisted hopping between localised states one, expects the
conductivity to increase with frequency. Austin and Mott [23], have derived the following

formula when hopping conduction takes place near Eg:

o(0) = %ez KT [N(Er)]za"w[ln(-”ﬂ) s (2.41)
w
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where vy is a phonon frequency (typically of the order of 10s™) and o describes the decay
of localised state wave function (1/a is effective range of wave function). Two important
features can be drawn from this equation. (I) o(w) varies linearly with temperature ; (II)

because of the presence of logarithmic term [In(ﬂj 1*, the slope of a plot Ino(w) versus
@

In(w) in not constant , but decreases slightly with increasing frequency of the applied field.
The above equation can be an approximated by an expression of the form ;
o(w) ~ const. W*

where the exponent s is defined as d(Ino) / d(Inw) and is given by ,

)

Taking vpn ~ 10" 5™ the exponent decreases from a value s = 0.84 at © = 10° s to s = 0.65

s=1- (2.42)

at @ = 10°s™. If one makes the proper choice of the parameters o, (2.41) offers a straight
forward way of evaluating the density of states at the fermi levels. For amorphous
semiconductors the constant is estimated in the range 10" - 10° ev’' cm™. The exponent

power B and s are written as;

6k, T
= 2.43
B W, (2.43)
s=1-8 (2.44)
6k, T
l-s= =2 2.45
= (2.45)
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where kg is the Boltzmann constant, T is the absolute temperature and Wi, is the binding

energy. Equation (2.44) is only valid at lower temperatures when B has smaller temperature

dependence. Thus, the mini hopping di Imin 1S given by [24] ,
28
Fmin = 2.46
" nee W, ¢ )

where € is the primittivity of vacuum.
2.3.3 Optical Properties

The transition process from the valence band to the conduction band is known as the
fundamental absorption. In a fundamental absorption process, where an electron absorbs a
photon, the energy gap must be equal to or smaller than the photon energy (hv 2E,). It was
observed that there is a similarity between the amorphous semiconductors and crystalline
semiconductors where the absorption spectra is concerned. On the other hand, the obvious
difference was noted in the cut-off frequency, where it was found that it is higher and
sharply defined in crystalline states compared to the amorphous ones. In the amorphous
semiconductors the excitation of electrons take place from the localized states in the valence
bands to the delocalized states in conduction bands. This causes the difference in the cut-off
frequencies of the absorption spectra in the crystalline and the amorphous states. The cut-off
(minimum) frequency is referred to as the absorption edge where the excitation of electrons
from valence band to conduction band occurs when  vo= Ey/h. The absorption spectra of
amorphous semiconductors is shown in fig. 2.13. the absorption spectra of amorphous

semiconductors has three absorption regions that is:
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i. Region A : high absorption region (a>10* cm™), where the absorption coefficient o is
detailed by the realtion hva ~ (hv - E,)" ( r is a constant of the order 1, Eg is the optical
energy gap). At this region, the energy gap is obtained for all amorphous semiconductors.

ii. Region B : this is the exponential absorption region and is frequently observed in
crystalline semiconductors, which extends over 4 orders. From this region, the width of the
band tail (E.) is obtained.

iii. Region C : this is the week absorption tail that emanates from the transition of defect

states at the mid gap.

log a

hn

Figure 2.13 : Absorption spectrum of amorphous semiconductor.

The optical properties of thin films can be derived from the thin film interferometry.
In principle, the determination of the amplitudes and intensities of the beam of light reflected
or transmitted by single layer of a film or multilayer films are straight forward. Theoretical
and experimental analyses on the optical behaviour of thin films deal primarily with the
optical reflection coefficient (R), the transmission coefficient (T), and the absorption
coefficient (A), such that;

R+T+A=1 (2.47)
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These three parameters are directly related to the optical constant of the films as well as the
film thickness (tr). The optical constants of solids may be determined in two ways:
i. Intensity measurement (non-polarised light) , which can be either for normal or oblique
incidence.
ii. polarisation measurement with oblique incidence [25].
Conventional optical methods for determining the optical constants and thicknesses are ,
employed by several researches [26 , 27, 28]. They can be summarised as follows,
T=T(n,k,t,A)
R=R(n,k,t, 1) (2.48)
where T and R are the spectral transmittance and reflectance respectively of a film and A is
the wavelength of the incident light. It is to be noted that the conventional methods
mentioned above always lead to multiple solutions [29 , 30] and to choose the correct
solution, an efficient criterion has to be applied[31, 32]. Fig. 2.14 represents a thin film with
a complex refractive index , n"2 = n - ik , bounded by two transparent media with refractive

indices n; and ns.
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Incident light ReﬂeT(ed light

- Substrate

Transmitted light

Figure 2.14 : Transmission and reflection of light by a single thin film. (t = thickness of
thin film , n; = refractive index of air, n; = refractive index of substrate , n, = complex
refractive index of thin film , k = extinction coefficient)

The transmission and reflectance normal to the incident film are given by ;

. 2
7= 12z €XP-(iB)] . (2.49)
75 |L+ rgri; exp.(i2)]

_lns + myexp.i28)° s
[1+ 7,7y exp.(izﬂ){Z i

The indices 1 , 2 and 3 correspond to air , film and substrate respectively ; r; and t; are

Fresnel coefficients which for normal incidences are ,

2N,

t = 251
" N +N, @30
N.oN, (2.52)
= "
"N +N
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Taking N, = n + ik with n and k real functions of A, the complex angle p is given by ;

2mtn _ 27m _i2atk
P 2.53
B = . 2 (2.53)

where t is the film thickness and A is the vacuum wavelength of the incident radiation. Since
the surrounding media (glass and air) is assumed to be transparent , N; and N; are real
quantities which are represented by n; and n;. By replacing Fresnel coefficient (equation
2.51) in to equation 2.49 , and considering a weak absorption i.e. k* << (nz - m) and
k*<<(n; - n;) , equation (2.49) can be approximated as:

16nn,n* 4

T= ain (2.54)
Cl+Ci4, + ZC]C,ACa.{T)
where C; = (n; + n)(n + n3) ; C2 = (n - ny)(n; - n) and A = exp (-4ntk/A) = exp(-at). where

the absorption coefficient is [33-36],
a= (-—) (2.55)

* 2.3.4. Structural Properties

X-ray diffraction studies have played an important role in identification and
characterisation of solids and by distinguishing crystalline from amorphous substances. The
determination of the crystal structure, space groups, unit cell dimensions, atomic co-
ordinates and actual electron density distribution around atoms can be determined by using
the X-ray diffraction. Thin films consist of many single crystals known as grains or
crystallites , it is then called a polycrystal whose grain orientations are random. The bulk
crystal has grain sizes much larger than a thin film which is more disordered. In order to

“see” the fine details of molecular structures of many amorphous thin films , it is necessary
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to use radiation of wavelengths in the neighbourhood of 0.1mm (10'®*Hz) or smaller about
the dimension of atoms. Such a radiation beam is readily available in the form of X-rays
produced by bombarding a target composed of an element of intermediate atomic number
between Cr and Mo in the periodic table. The formation of an image of the object under
scrutiny is not possible when X-rays, neutrons and high energy electrons are used to provide
atomic resolution.

The pattern of radiation which was scattered is known as the diffraction pattern and
according the Bragg’s equation it is;

nA =2 d sinf (2.56)

where A is radiation wavelength, n is integer, d is the parallel plane lattice spacing and 0 is
the angle of incidence of the beam. The diffracted rays produced from the crystals are
divided in two stages;
i. scattering by individual atoms, due to regularity of the atomic lattice.
ii. mutual interference between the scattered rays where the wavelength is of the same order
as the interatomic distance[37, 38].
2.3.5. The Role of Hydrogen Content and Dangling Bonds in Hydrogenated
Amorphous Silicon

In order to understand the role played by hydrogen during the film growth, it is
helpful to examine the net reaction equation [43].

SiH(plasma) <>Si(solid) + xH(plasma)

The forward reaction represents the film deposition, while the reverse one, represents the
film erosion. The film formation is actually due to two types of reactions namely deposition

and hydrogen “etching” of the growth surface. The exact rate of the film growth depends on
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the balance between the two. Under normal deposition conditions, the reaction is very far
from equilibrium and moves predominantly forward, leading to film formation. But even in
the case of pure SiH, plasma deposition the reverse reaction still takes place. The reverse
reaction is termed as etching and this reaction does not lead to the Si network propagation.
The reaction occurring on the growing surface leads to the reaction of hydrogen atom
eroding the Si-surface and involves other more complex reaction forming volatile species
which leaves the film surface. The success of a-Si:H originates from its low defect density
and the key to achieving a low defect density material is the presence of hydrogen during the
film growth. On the other hand, adding larger amounts of hydrogen to dilute reactant gasses
in the plasma will produce microcrystalline silicon or even polycrystalline material. The
formation of microcrystalline material will be dominant due to the chemical equilibrium in
the above reaction. Hydrogen is present in abundance during the film growth because
hydrogen is the by product of the silane dissociation reaction and this hydrogen also plays an
important role in the plasma deposition of a-Si:H. The effectiveness of hydrogen in reducing
defects depends strongly on the way it is incorporated , rather than the hydrogen content
itself. For hydrogenated amorphous silicon (a-Si:H) films deposited at substrate temperature
above ~ 200°C , most of the hydrogen present is in the monohydride form, a-Si:H film
deposited at lower temperature contains much more hydrogen but the hydrogen is bonded in
the most defective modes of SiHy, SiH; or (SiH), [44]. The presence of hydrogen tends to
saturate the dangling bonds on internal surface of microvoids and on point defects in the
structure. It has by no means been established that bond saturation by hydrogen is the only
reason for the much lower overall density of states in glow discharge a-Si:H compared with

levels found in evaporated or sputtered materials [45]. It is very likely that different
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deposition methods leads to different defect structures. Comparatively large microvoids ,

containing nu dangling bonds, appear to dominate the properties of evaporated a-

Si:H [46], whereas in the glow discharge material, point defects possibly of the divacancy

type predominate. The electron energy levels of these dangling bonds (unpaired electrons)

lie in between the valence and conduction band states of fully paired bonded electrons.
When the amorphous material is heated or annealed at sufficiently high temperature

(350°C - 600°C) , but below the crystallisation temperature, hydrogenated silicon loses most

of its hydrogen. As expected, paramagnetic d ling bonds are left behind, and a large
increase of the magnetic resonance signal is observed [47]. It is possible to produce a
complete chemical reaction between the broken bonds of the pure material with external
hydrogen, thus transforming the first material into low density of states hydrogenated
silicon. Of course, this cannot be reached.with.the molecular gas, since the breaking of the
H-H bond would require too much energy. The reaction is therefore performed in 2
hydrogen plasma containing a large propotion of atomic hydrogen. The size of the atom is
qui‘!e small, at a tempereture of 500°C, it can easily diffuse into the bulk of the pure
amorphous silicon and makes a stable covalent bond with the localised defects of 'the

material. These types of annealing effects are due to the healing of the dangling bonds by the

reconstruction and the rearrangement of the amorphous network. However, it was

established that under certain conditions the effects of ling in reducing dangling bonds
are not much. Even large compensated microvoids may be created depending on the
deposition conditions. Hydrogen content generally increases as the substrate temperature
increases, the SiH, preassure decreases and as the rf power in the electrodeless discharge

increases [48]. The key to achieve low defects density material is to fabricate a-Si:H with
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ideal hydrogen content suited for microcrystalline devices. The hydrogen incorporated
during depositions may depend perhaps critically, on the detailed plasma conditions at the
specimen surfaces, as has been established for some of the other properties. Schottky
Barrier and pn junction diodes have been fabricated with amorphous silicon. When operated
solar cells and these diodes behave almost like corresponding crystal devices. Hydrogen and
other additivies might, beside passivating the gap states, also play active role of enlarging the
band gap, changing the electron lattice-coupling etc. How much hydrogenation is needed to

reveal the most interesting phenomena is still an open question.
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