REMOVAL OF COPPER BY MARINE
ALGAL BIOMASS IMMOBILISED IN
POLYVINYL ALCOHOL BEADS

BY
TAN HUI NING

A DISSERTATION SUBMITTED FOR THE DEGREE OF
MASTER OF PHILOSOPHY
OF
INSTITUTE OF POSTGRADUATE STUDIES AND RESEARCH
UNIVERSITY OF MALAYA
1999
I wish to express my greatest appreciation to those who have given me much valued assistance. Special acknowledgements are due to my principal supervisor, Professor Mohd Ali Hashim for his helpful guidance and advice. Also, I wish to express my sincere thanks to Dr. Chu Khim Hoong for his useful assistance, suggestions and invaluable advice in guiding me throughout the course of this study. Thanks.

To my lab-mate, Chee Choong, my sincere thanks for his help during this study. I would also like to thank Jasmi and Ismail for their useful technical assistance.

Lastly, I would like to thank my mom for her unfailing love, encouragement and support.
The main objective of this study was to investigate the feasibility of using the immobilised biomass of Sargassum baccularia, a brown macroalga, to remove and recover copper from aqueous solution. The technology is commonly known as biosorption. The nonliving biomass of S. baccularia was immobilised onto polyvinyl alcohol matrix to produce spherical gel beads. The kinetics as well as equilibrium aspects of the biosorption process were characterised. The biosorption of copper by the native biomass was a rapid process, reaching equilibrium within one hour of contact. The immobilised biomass, however, required a much longer time, about 20 hours, to attain equilibrium. The effect of solution pH on biosorption equilibria was investigated. Results indicated that copper uptake by the native as well as immobilised biomass increased with increasing pH. The maximum binding capacities of the native and immobilised biomass for copper at pH 6.0 were 1.66 and 0.63 mmol/g, respectively. Aqueous solution of ethylenediaminetetraacetic acid (EDTA) at 2 mM and hydrochloric acid (HCl) at pH 1.0 were effective desorbents. Both desorbents were able to desorb more than 90 % of the bound copper from the immobilised biomass in a single cycle of adsorption-desorption. Highly concentrated copper solution was obtained with a solid-to-liquid ratio (S/L) of 11 when HCl at pH 1.0 was used as the desorbent. The reusability of the immobilised biomass in batch systems was investigated in five consecutive cycles of adsorption-
desorption. The immobilised biomass was able to retain more than 50% of its initial copper uptake capacity at the completion of the five cycles. The quantity of copper desorbed over the five cycles with either HCl or EDTA as the desorbent corresponded well to the quantity loaded, indicating that complete desorption was readily achieved. Continuous flow experiments were conducted by using the immobilised biomass beads in a fixed-bed column. Results showed that there was little change in column performance after three consecutive cycles of copper loading-desorption. Desorption studies showed that concentrated copper solution was obtained when the fixed-bed column was regenerated using EDTA as the desorbent. Relatively low copper concentration in the influent and low column flow rate gave satisfactory copper uptake efficiency in the fixed-bed column experiments. A simple two parameter fixed-bed model was capable of predicting the behaviour of the fixed-bed column. Although exact quantitative agreement between theoretical predictions and experimental data was not obtained, the simple model managed to predict the general behaviour of the fixed-bed column under various operating conditions.
ABSTRAK

Objektif utama penyelidikan ini adalah untuk mengkaji kebolehan imobilis biojisim Sargassum baccaria (sejenis makroalga perang) untuk menyeringkir dan memulih ion kuprum dari larutan akuas. Teknologi ini umumnya dikenali sebagai biopenjerapan. Biojisim mati ini telah berjaya diimobiliskan dalam matriks polivinil alkohol untuk menghasilkan manik-manik berbentuk sfera. Ciri-ciri kinetik dan aspek keseimbangan proses biopenjerapan telah dikaji. Proses penjerapan ion kuprum ke atas zarah asli S. baccaria merupakan suatu proses yang cepat dan mencapai keseimbangan dalam masa satu jam. Akan tetapi, biojisim yang diimobiliskan memerlukan masa yang agak panjang, lebih kurang 20 jam, untuk mencapai keseimbangan. Kesan pH larutan terhadap kesimbangan biopenjerapan telah dijalankan. Keputusan eksperimen menunjukkan penjerapan kuprum oleh biojisim asli dan biojisim yang diimobiliskan bertambah apabila pH larutan bertambah. Penjerapan maksimum kuprum oleh biojisim asli dan biojisim yang diimobiliskan pada pH 6.0 didapati mencapai nilai 1.66 mmol/g dan 0.63 mmol/g masing-masing. Larutan akuas asid etilena diaminetetraasetik (EDTA) pada kepekatan 2 mM dan asid hidroklorik (HCl) pada pH 1.0 merupakan agen penyahjerapan yang berkesan. Kedua-duanya berkeupayaan menyahjerap lebih daripada 90 % kuprum yang terjerap pada biojisim yang diimobiliskan dalam satu kitaran penjerapan-penyahjerapan. Larutan berkekepakan tinggi diperolehi apabila HCl pada pH 1.0 dengan nisbah pepejal-cecair (S/L) setinggi 11 digunakan sebagai agen
TABLE OF CONTENTS

Acknowledgement i
ABSTRACT ii
Abstrak iv
Table of Contents vi
List of Tables xi
List of Figures xiii
List of Plates xv
Notations xvi

CHAPTER ONE

INTRODUCTION

1.1 General Background 1-1
1.2 Heavy Metal Pollution in Malaysia 1-2
1.3 Conventional Treatment Methods for Heavy Metal Removal 1-5
 1.3.1 General Background 1-5
 1.3.2 Precipitation 1-6
 1.3.3 Reverse Osmosis 1-7
 1.3.4 Ion-exchange 1-8
 1.3.5 Electrodialysis 1-9
 1.3.6 Solvent Extraction 1-10
1.4 Biologically Based Treatment Technologies 1-11
1.5 Objectives and Scope of Research 1-12
CHAPTER TWO

LITERATURE REVIEW

2.1 General Background 2-1
2.2 Heavy Metals 2-2
2.3 Copper 2-5
 2.3.1 General Background 2-5
 2.3.2 Copper Toxicity 2-7
2.4 Biological Treatment Methods for Heavy Metal Removal 2-8
 2.4.1 Living Biomass as Biosorbent 2-9
 2.4.2 Dead Biomass as Biosorbent 2-11
2.5 Algal Biomass as Biosorbent 2-13
 2.5.1 pH Effect on the Biosorption Process 2-18
 2.5.2 Regeneration of Algal Biomass 2-19
2.6 Immobilisation of Biomass 2-22
 2.6.1 General Background 2-22
 2.6.2 Methodologies of Immobilisation 2-23
 2.6.3 Regeneration of Immobilised Biomass 2-26
 2.6.4 Reactor Design for Heavy Metal Removal 2-27

CHAPTER THREE

KINETICS AND EQUILIBRIA OF COPPER BIOSORPTION

3.1 General Background 3-1
3.2 Equilibrium Isotherms 3-3
3.3 Materials and Methods 3-7
 3.3.1 Materials 3-7
 3.3.2 Methods 3-9
3.4 Results and Discussion 3-11
 3.4.1 Immobilisation of *S. baccularia* 3-11
 3.4.2 Kinetics of Copper Biosorption 3-15
 3.4.3 Equilibria of Copper Biosorption 3-19
3.5 Conclusions 3-30

CHAPTER FOUR

DESORPTION CHARACTERISTICS OF COPPER ON IMMOBILISED ALGAL BIOMASS

4.1 General Background 4-1
4.2 Materials and Methods 4-3
 4.2.1 Materials 4-3
 4.2.2 Methods 4-4
 4.2.2.1 Copper Desorption Kinetics 4-4
 4.2.2.2 Evaluation of Desorbents 4-4
 4.2.2.3 Multiple Cycles of Copper Adsorption-Desorption 4-5
4.3 Results and Discussion 4-6
 4.3.1 Copper Desorption Kinetics 4-6
 4.3.2 Evaluation of Desorbents 4-9
 4.3.2.1 Hydrochloric Acid as Desorbent 4-9
 4.3.2.2 EDTA as Desorbent 4-16
 4.3.3 Multiple Cycles of Copper Adsorption-Desorption 4-18
4.4 Conclusions 4-26
CHAPTER FIVE

BIOSORPTION OF COPPER BY IMMOBILISED ALGAL BIOMASS IN FIXED-BED COLUMN

5.1 General Background 5-1
5.2 Mathematical Modelling of Breakthrough Curves 5-3
5.3 Materials and Methods 5-6
 5.3.1 Materials 5-6
 5.3.2 Methods 5-7
5.4 Results and Discussion 5-9
 5.4.1 Loading of Copper in Fixed-Bed Column 5-9
 5.4.2 Desorption of Copper in Fixed-Bed Column 5-12
 5.4.3 Effect of Flow Rate on the Behaviour of Fixed-Bed Column 5-17
 5.4.4 Effect of Influent Copper Concentration on the Behaviour of Fixed-Bed Column 5-20
 5.4.5 Modelling Breakthrough Data by A Two Parameter Fixed-Bed Model 5-24
5.5 Conclusions 5-28

CHAPTER SIX

SUMMARY AND RECOMMENDATIONS

6.1 Summary 6-1
6.2 Recommendations for Future Studies 6-7
REFERENCES

APPENDIX I

Seaweed Biomass Collection Site
LIST OF TABLES

Table 1.1 Malaysia: Status of marine water quality, 1996.
Table 2.1 Classification of elements according to toxicity and availability.
Table 2.2 Maximum permissible concentration of various metals in natural waters for the protection of human health.
Table 2.3 Ionisable groups in biological polymers capable of participating in metal binding.
Table 3.1 Langmuir isotherm parameters at pH 3.0 and 6.0 for the native biomass of S. baccularia.
Table 3.2 Langmuir isotherm parameters at pH 3.0 and 6.0 for the immobilised biomass of S. baccularia.
Table 4.1 S/L ratio and CF values with HCl at pH 1.0 as desorbent.
Table 4.2 Desorption efficiency and reloading efficiency in five consecutive cycles of copper adsorption and desorption using HCl at pH 1.0 as desorbent.
Table 4.3 Desorption efficiency and reloading efficiency in five consecutive cycles of copper adsorption and desorption using 2 mM EDTA solution as desorbent.
Table 4.4 Total amount of copper adsorbed and desorbed and the recovery percentage over five cycles of adsorption-desorption.
Table 5.1 Estimated values of t_0, σ, k_1 and k_2.

<table>
<thead>
<tr>
<th>t_0</th>
<th>σ</th>
<th>k_1</th>
<th>k_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 3.1 Kinetics of copper biosorption by the native biomass of
Sargassum baccularia. 3-16

Figure 3.2 Kinetics of copper biosorption by the immobilised biomass
of Sargassum baccularia and pure PVA beads. 3-17

Figure 3.3 Effect of initial solution pH on the equilibria of copper
biosorption on the native biomass of Sargassum
baccularia. The solid lines are fitted curves using the
Langmuir model. 3-21

Figure 3.4 Effect of initial solution pH on the equilibria of copper
biosorption on the immobilised biomass of Sargassum
baccularia. The solid lines are fitted curve using the
Langmuir model. 3-26

Figure 3.5 Copper accumulation ratios in solution containing different
amounts of copper at pH 3.0 and 6.0. 3-29

Figure 4.1 Kinetics of copper desorption from immobilised biomass
of Sargassum baccularia. Desorbents used were HCl at pH
1.0 and pH 2.0 and 8 mM EDTA solution. 4-8

Figure 4.2 Effect of solid-to-liquid ratio on copper desorption
efficiency. Desorbent = HCl at pH 1.0. 4-12

Figure 4.3 Effect of desorbent volume on copper concentration in the
desorbent. Desorbent = HCl at pH 1.0. 4-13
Figure 4.4 Copper desorption efficiency as a function of EDTA concentration. 4-17

Figure 4.5 Five consecutive cycles of copper adsorption-desorption using HCl at pH 1.0 as desorbent. 4-20

Figure 4.6 Five consecutive cycles of copper adsorption-desorption using 2 mM EDTA solution as desorbent. 4-21

Figure 5.1 Copper breakthrough curves at column outlet. Column size: 1.6 cm I.D. and 20 cm length. Flow rate: 1.0 mL/min. 5-10

Figure 5.2 Effluent pH for three copper loading experiments. 5-13

Figure 5.3 Copper desorption curves at column outlet. Column size: 1.6 cm I.D. and 20 cm length. Flow rate: 1.0 mL/min. 5-14

Figure 5.4 Effluent pH for three copper desorption experiments. 5-16

Figure 5.5 Breakthrough curves at two column flow rates. Inlet copper concentration = 0.3 mM (20 mg/L). 5-18

Figure 5.6 Breakthrough curves for copper loading at two inlet copper concentrations. Column flow rate = 1.0 ml/min. 5-21

Figure 5.7 Effect of inlet copper concentration on copper removal by immobilised Sargassum baccularia beads. 5-22

Figure 5.8 Theoretical and experimental column breakthrough curves at flow rate of 1.0 ml/min and influent copper concentration of 0.3 mM (20 mg/L). 5-26
Figure 5.9 Theoretical and experimental column breakthrough curves at flow rate of 1.5 ml/min and influent copper concentration of 0.3 mM (20 mg/L).

LIST OF PLATES

Plate 5.1 Laboratory set up for the fixed-bed column.
NOTATIONS

\begin{itemize}
\item \(a\) \quad \text{surface area per volume, m}^2/\text{m}^3 \\
\item \(C_{eq}\) \quad \text{liquid phase equilibrium metal concentration, mM} \\
\item \(C_f\) \quad \text{final or equilibrium metal concentration, mM} \\
\item \(C_i\) \quad \text{known initial metal concentration, mM} \\
\item \(c\) \quad \text{solute concentration in the effluent, mM} \\
\item \(c^*\) \quad \text{equilibrium concentration at column outlet, mM} \\
\item \(c_i\) \quad \text{influent metal concentration, mM} \\
\item \(E\) \quad \text{dispersion coefficient, m}^2/\text{hr} \\
\item \(\text{erf}(x)\) \quad \text{error function of } x \\
\item \(k\) \quad \text{Langmuir equilibrium constant, mM}^{-1} \\
\item \(k\) \quad \text{mass transfer coefficient, m/hr} \\
\item \(k_1\) \quad \text{constant, mL}^{-1} \\
\item \(k_2\) \quad \text{constant, hr.m/mL} \\
\item \(L\) \quad \text{column length, m} \\
\item \(M\) \quad \text{amount of the biomass, g} \\
\item \(Q\) \quad \text{column flow rate, mL/min} \\
\item \(q\) \quad \text{adsorbed solute concentration, mmol/g} \\
\item \(q_{eq}\) \quad \text{solid phase equilibrium metal concentration, mmol/g biomass} \\
\item \(q_{max}\) \quad \text{maximum metal adsorption capacity, mmol/g biomass} \\
\item \(r\) \quad \text{adsorption rate per bed volume, mmol/m}^3.\text{hr} \\
\item \(t\) \quad \text{time, h} \\
\item \(t_0\) \quad \text{characteristic time, h} \\
\item \(V\) \quad \text{volume of metal-bearing solution, L} \\
\item \(z\) \quad \text{position, m} \\
\item \(\sigma\) \quad \text{standard deviation, dimensionless} \\
\item \(\varepsilon\) \quad \text{void fraction in the fixed-bed, dimensionless} \\
\item \(\nu\) \quad \text{superficial velocity, m}^3/\text{m}^2.\text{hr} \\
\end{itemize}