TABLE OF CONTENTS

Acknowledgement i
ABSTRACT ii
Abstrak iv
Table of Contents vi
List of Tables xi
List of Figures xiii
List of Plates xv
Notations xvi

CHAPTER ONE

INTRODUCTION

1.1 General Background 1-1
1.2 Heavy Metal Pollution in Malaysia 1-2
1.3 Conventional Treatment Methods for Heavy Metal Removal 1-5
 1.3.1 General Background 1-5
 1.3.2 Precipitation 1-6
 1.3.3 Reverse Osmosis 1-7
 1.3.4 Ion-exchange 1-8
 1.3.5 Electrodialysis 1-9
 1.3.6 Solvent Extraction 1-10
1.4 Biologically Based Treatment Technologies 1-11
1.5 Objectives and Scope of Research 1-12
CHAPTER TWO

LITERATURE REVIEW

2.1 General Background 2-1
2.2 Heavy Metals 2-2
2.3 Copper 2-5
 2.3.1 General Background 2-5
 2.3.2 Copper Toxicity 2-7
2.4 Biological Treatment Methods for Heavy Metal Removal 2-8
 2.4.1 Living Biomass as Biosorbent 2-9
 2.4.2 Dead Biomass as Biosorbent 2-11
2.5 Algal Biomass as Biosorbent 2-13
 2.5.1 pH Effect on the Biosorption Process 2-18
 2.5.2 Regeneration of Algal Biomass 2-19
2.6 Immobilisation of Biomass 2-22
 2.6.1 General Background 2-22
 2.6.2 Methodologies of Immobilisation 2-23
 2.6.3 Regeneration of Immobilised Biomass 2-26
 2.6.4 Reactor Design for Heavy Metal Removal 2-27

CHAPTER THREE

KINETICS AND EQUILIBRIA OF COPPER BIOSORPTION

3.1 General Background 3-1
3.2 Equilibrium Isotherms 3-3
3.3 Materials and Methods 3-7
 3.3.1 Materials 3-7
 3.3.2 Methods 3-9
CHAPTER FOUR

DESORPTION CHARACTERISTICS OF COPPER ON IMMOBILISED ALGAL BIOMASS

4.1 General Background 4-1
4.2 Materials and Methods 4-3
 4.2.1 Materials 4-3
 4.2.2 Methods 4-4
 4.2.2.1 Copper Desorption Kinetics 4-4
 4.2.2.2 Evaluation of Desorbents 4-4
 4.2.2.3 Multiple Cycles of Copper Adsorption-Desorption 4-5
4.3 Results and Discussion 4-6
 4.3.1 Copper Desorption Kinetics 4-6
 4.3.2 Evaluation of Desorbents 4-9
 4.3.2.1 Hydrochloric Acid as Desorbent 4-9
 4.3.2.2 EDTA as Desorbent 4-16
 4.3.3 Multiple Cycles of Copper Adsorption-Desorption 4-18
4.4 Conclusions 4-26
CHAPTER FIVE

BIOSORPTION OF COPPER BY IMMOBILISED ALGAL BIOMASS IN FIXED-BED COLUMN

5.1 General Background 5-1
5.2 Mathematical Modelling of Breakthrough Curves 5-3
5.3 Materials and Methods 5-6
 5.3.1 Materials 5-6
 5.3.2 Methods 5-7
5.4 Results and Discussion 5-9
 5.4.1 Loading of Copper in Fixed-Bed Column 5-9
 5.4.2 Desorption of Copper in Fixed-Bed Column 5-12
 5.4.3 Effect of Flow Rate on the Behaviour of Fixed-Bed Column 5-17
 5.4.4 Effect of Influent Copper Concentration on the Behaviour of Fixed-Bed Column 5-20
 5.4.5 Modelling Breakthrough Data by A Two Parameter Fixed-Bed Model 5-24
5.5 Conclusions 5-28

CHAPTER SIX

SUMMARY AND RECOMMENDATIONS

6.1 Summary 6-1
6.2 Recommendations for Future Studies 6-7
REFERENCES

APPENDIX I
Seaweed Biomass Collection Site
LIST OF TABLES

Table 1.1 Malaysia: Status of marine water quality, 1996. 1-3

Table 2.1 Classification of elements according to toxicity and availability. 2-3

Table 2.2 Maximum permissible concentration of various metals in natural waters for the protection of human health. 2-5

Table 2.3 Ionisable groups in biological polymers capable of participating in metal binding. 2-16

Table 3.1 Langmuir isotherm parameters at pH 3.0 and 6.0 for the native biomass of *S. baccularia*. 3-20

Table 3.2 Langmuir isotherm parameters at pH 3.0 and 6.0 for the immobilised biomass of *S. baccularia*. 3-25

Table 4.1 S/L ratio and CF values with HCl at pH 1.0 as desorbent. 4-11

Table 4.2 Desorption efficiency and reloading efficiency in five consecutive cycles of copper adsorption and desorption using HCl at pH 1.0 as desorbent. 4-22

Table 4.3 Desorption efficiency and reloading efficiency in five consecutive cycles of copper adsorption and desorption using 2 mM EDTA solution as desorbent. 4-23

Table 4.4 Total amount of copper adsorbed and desorbed and the recovery percentage over five cycles of adsorption-desorption. 4-24
Table 5.1 Estimated values of t_0, σ, k_1 and k_2.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 3.1 Kinetics of copper biosorption by the native biomass of *Sargassum baccularia*. 3-16

Figure 3.2 Kinetics of copper biosorption by the immobilised biomass of *Sargassum baccularia* and pure PVA beads. 3-17

Figure 3.3 Effect of initial solution pH on the equilibria of copper biosorption on the native biomass of *Sargassum baccularia*. The solid lines are fitted curves using the Langmuir model. 3-21

Figure 3.4 Effect of initial solution pH on the equilibria of copper biosorption on the immobilised biomass of *Sargassum baccularia*. The solid lines are fitted curves using the Langmuir model. 3-26

Figure 3.5 Copper accumulation ratios in solution containing different amounts of copper at pH 3.0 and 6.0. 3-29

Figure 4.1 Kinetics of copper desorption from immobilised biomass of *Sargassum baccularia*. Desorbents used were HCl at pH 1.0 and pH 2.0 and 8 mM EDTA solution. 4-8

Figure 4.2 Effect of solid-to-liquid ratio on copper desorption efficiency. Desorbent = HCl at pH 1.0. 4-12

Figure 4.3 Effect of desorbent volume on copper concentration in the desorbent. Desorbent = HCl at pH 1.0. 4-13
Figure 4.4 Copper desorption efficiency as a function of EDTA concentration. 4-17

Figure 4.5 Five consecutive cycles of copper adsorption-desorption using HCl at pH 1.0 as desorbent. 4-20

Figure 4.6 Five consecutive cycles of copper adsorption-desorption using 2 mM EDTA solution as desorbent. 4-21

Figure 5.1 Copper breakthrough curves at column outlet. Column size: 1.6 cm I.D. and 20 cm length. Flow rate: 1.0 mL/min. 5-10

Figure 5.2 Effluent pH for three copper loading experiments. 5-13

Figure 5.3 Copper desorption curves at column outlet. Column size: 1.6 cm I.D. and 20 cm length. Flow rate: 1.0 mL/min. 5-14

Figure 5.4 Effluent pH for three copper desorption experiments. 5-16

Figure 5.5 Breakthrough curves at two column flow rates. Inlet copper concentration = 0.3 mM (20 mg/L). 5-18

Figure 5.6 Breakthrough curves for copper loading at two inlet copper concentrations. Column flow rate = 1.0 ml/min. 5-21

Figure 5.7 Effect of inlet copper concentration on copper removal by immobilised Sargassum baccularia beads. 5-22

Figure 5.8 Theoretical and experimental column breakthrough curves at flow rate of 1.0 ml/min and influent copper concentration of 0.3 mM (20 mg/L). 5-26
Figure 5.9 Theoretical and experimental column breakthrough curves at flow rate of 1.5 ml/min and influent copper concentration of 0.3 mM (20 mg/L).

LIST OF PLATES

Plate 5.1 Laboratory set up for the fixed-bed column.