TABLE OF CONTENTS

Acknow	ieagem	ent	1
ABSTR	ACT		ii
Abstrak			iv
Table of	Conter	nts	vi
List of T	ables		xi
List of F	igures		xiii
List of P	lates		xv
Notation	S		xvi
1			
,			
CHAPT	ER ON	E	
INT	RODU	CTION	
1.1	Gener	al Background	1-1
1.2	Heavy	Metal Pollution in Malaysia	1-2
1.3	Conve	entional Treatment Methods for Heavy Metal Removal	1-5
	1.3.1	General Background	1-5
	1.3.2	Precipitation	1-6
	1.3.3	Reverse Osmosis	1-7
	1.3.4	Ion-exchange	1-8
	1.3.5	Electrodialysis	1-9
	1.3.6	Solvent Extraction	1-10
1.4	Biolog	gically Based Treatment Technologies	1-11
1.5	Objec	tives and Scope of Research	1-12

CHAPTER TWO

	LIT	ERAT	URE REVIEW	
	2.1	Gener	al Background	2-
	2.2	Heavy	Metals	2-2
	2.3	Coppe	er	2-
	7	2.3.1	General Background	2-
		2.3.2	Copper Toxicity	2-
	2.4	Biolog	gical Treatment Methods for Heavy Metal Removal	2-8
	1	2.4.1	Living Biomass as Biosorbent	2-
	1	2.4.2	Dead Biomass as Biosorbent	2-1
	2.5	Algal	Biomass as Biosorbent	2-1
		2.5.1	pH Effect on the Biosorption Process	2-1
		2.5.2	Regeneration of Algal Biomass	2-19
	2.6	Immo	bilisation of Biomass	2-22
		2.6.1	General Background	2-22
		2.6.2	Methodologies of Immobilisation	2-2
		2.6.3	Regeneration of Immobilised Biomass	2-2
		2.6.4	Reactor Design for Heavy Metal Removal	2-2
CF	<i>IAPT</i>	ER THE	REE	
	KIN	ETICS	S AND EQUILIBRIA OF COPPER BIOSORPTION	
	3.1	Gener	al Background	3-1
	3.2	Equili	brium Isotherms	3-3
	3.3	Mater	ials and Methods	3-7
		3.3.1	Materials	3-
		3.3.2	Methods	3-9

3.4	Result	ts and Dis	cussion	3-1	11
	3.4.1	Immobi	lisation of S. baccularia	3-1	11
	3.4.2	Kinetics	of Copper Biosorption	3-1	15
	3.4.3	Equilibr	ia of Copper Biosorption	3-1	19
3.5	Concl	usions		3-3	30
7					
,					
3					
1					
CHAPT	ER FOU	U R			
DES	ORPT	ION C	HARACTERISTICS OF COPPER	ON	
IMN	10BIL	ISED AI	GAL BIOMASS		
4.1	Gener	al Backgr	ound	4	-1
4.2	Mater	ials and M	fethods	4	-3
	4.2.1	Material	s	4-	-3
	4.2.2	Methods	S	4-	-4
		4.2.2.1	Copper Desorption Kinetics	4	-4
		4.2.2.2	Evaluation of Desorbents	4-	-4
		4.2.2.3	Multiple Cycles of Copper Adsorption-		
			Desorption	4-	-5
4.3	Result	s and Dis	cussion	4-	-6
	4.3.1	Copper	Desorption Kinetics	4-	-6
	4.3.2	Evaluati	on of Desorbents	4	-9
		4.3.2.1	Hydrochloric Acid as Desorbent	4	-9
		4.3.2.2	EDTA as Desorbent	4-1	6
	4.3.3	Multiple	Cycles of Copper Adsorption-Desorption	4-1	8
4.4	Concl	usions		4-2	26

CHAPTER FIVE

BIOSORPTION	OF	COPPER	BY	IMMOBILISED	ALGAI
BIOMASS IN FI	XED	-BED COL	UM	N	

5.1	Genera	al Background	5-
5.2	Mathe	matical Modelling of Breakthrough Curves	5-3
5.3	Materi	als and Methods	5-
,	5.3.1	Materials	5-6
1	5.3.2	Methods	5-
5.4	Result	s and Discussion	5-9
,	5.4.1	Loading of Copper in Fixed-Bed Column	5-9
	5.4.2	Desorption of Copper in Fixed-Bed Column	5-12
	5.4.3	Effect of Flow Rate on the Behaviour of Fixed-Bed	
		Column	5-1
	5.4.4	Effect of Influent Copper Concentration on the	
		Behaviour of Fixed-Bed Column	5-20
	5.4.5	Modelling Breakthrough Data by A Two Parameter	
		Fixed-Bed Model	5-2
5.5	Conclu	usions	5-2

CHAPTER SIX

SUMMARY AND RECOMMENDATIONS

6.1	Summary	6-1
6.2	Recommendations for Future Studies	6-7

REFERENCES	R-1
------------	-----

AP	PEN	DIX	1
----	-----	-----	---

Seaweed Biomass Collection Site

A-1

1

.

LIST OF TABLES

Table 1.1	Malaysia: Status of marine water quality, 1996.	1-
Table 2.1	Classification of elements according to toxicity and availability.	2-
Table 2.2	Maximum permissible concentration of various metals in natural waters for the protection of human health.	2-
Table 2.3	Ionisable groups in biological polymers capable of participating in metal binding.	2-10
Table 3.1	Langmuir isotherm parameters at pH 3.0 and 6.0 for the native biomass of $S.\ baccularia$.	3-20
Table 3.2	Langmuir isotherm parameters at pH 3.0 and 6.0 for the immobilised biomass of $S.\ baccularia.$	3-2:
Table 4.1	S/L ratio and CF values with HCl at pH 1.0 as desorbent.	4-1
Table 4.2	Desorption efficiency and reloading efficiency in five consecutive cycles of copper adsorption and desorption using HCl at pH 1.0 as desorbent.	4-22
Table 4.3	Desorption efficiency and reloading efficiency in five consecutive cycles of copper adsorption and desorption using 2 mM EDTA solution as desorbent.	4-22
Table 4.4	Total amount of copper adsorbed and desorbed and the recovery percentage over five cycles of adsorption-desorption.	4-24

LIST OF FIGURES

Figure 3.1	Kinetics of copper biosorption by the native biomass of Sargassum baccularia.	3-16
Figure 3.2	Kinetics of copper biosorption by the immobilised biomass of $Sargassum\ baccularia$ and pure PVA beads.	3-17
Figure 3.3	Effect of initial solution pH on the equilibria of copper biosorption on the native biomass of <i>Sargassum baccularia</i> . The solid lines are fitted curves using the Langmuir model.	3-21
Figure 3.4	Effect of initial solution pH on the equilibria of copper biosorption on the immobilised biomass of <i>Sargassum baccularia</i> . The solid lines are fitted curve using the Langmuir model.	3-26
Figure 3.5	Copper accumulation ratios in solution containing different amounts of copper at pH 3.0 and 6.0.	3-29
Figure 4.1	Kinetics of copper desorption from immobilised biomass of $Sargassum\ baccularia$. Desorbents used were HCl at pH 1.0 and pH 2.0 and 8 mM EDTA solution.	4-8
Figure 4.2	Effect of solid-to-liquid ratio on copper desorption efficiency. Desorbent = HCl at pH 1.0 .	4-12
Figure 4.3	Effect of desorbent volume on copper concentration in the desorbent. Desorbent = HCl at pH 1.0.	4-13

Figure 4.4	Copper desorption efficiency as a function of EDTA concentration.	4-17
Figure 4.5	Five consecutive cycles of copper adsorption-desorption using HCl at pH 1.0 as desorbent.	4-20
Figure 4.6	Five consecutive cycles of copper adsorption-desorption using 2 mM EDTA solution as desorbent.	4-21
Figure 5.1	Copper breakthrough curves at column outlet. Column size: 1.6 cm I.D. and 20 cm length. Flow rate: 1.0 mL/min.	5-10
Figure 5.2	Effluent pH for three copper loading experiments.	5-13
Figure 5.3	Copper desorption curves at column outlet. Column size: $1.6\ cm\ I.\ D.$ and $20\ cm$ length. Flow rate: $1.0\ mL/min.$	5-14
Figure 5.4	Effluent pH for three copper desorption experiments.	5-16
Figure 5.5	Breakthrough curves at two column flow rates. Inlet copper concentration = 0.3 mM (20 mg/L).	5-18
Figure 5.6	Breakthrough curves for copper loading at two inlet copper concentrations. Column flow rate = 1.0 ml/min .	5-21
Figure 5.7	Effect of inlet copper concentration on copper removal by immobilised $Sargassum\ baccularia$ beads.	5-22
Figure 5.8	Theoretical and experimental column breakthrough curves at flow rate of 1.0 ml/min and influent copper concentration of 0.3 mM (20 mg/L).	5-26

Figure 5.9 Theoretical and experimental column breakthrough curves at flow rate of 1.5 ml/min and influent copper concentration of 0.3 mM (20 mg/L).

LIST OF PLATES

5-8

Plate 5.1 Laboratory set up for the fixed-bed column.