Chapter 4 System Analysis and Requirement

This chapter provides an in depth analysis of the UMJaNetSim network simulator. The
chapter begins with the overview of UMJaNetSim architecture and the UMJaNetSim
Application Programming Interface (API). The aim is to provide an explanation of the

UMJaNetSim architecture.

The following section discusses the MPLS VPN architecture that run on MP-BGP. It is
followed by an analysis of new components as well as the requirement to develop the MPLS

VPN simulator.

The final section summarizes the details of this chapter. It summarizes the analysis of

simulator as well as the MPLS VPN architecture that based on MP-iBGP.
4.1 UMJaNetSim Architecture

UMJaNetSim simulator is a flexible test bed for studying and evaluating the performance of
MPLS network without the expense of building a real network. The simulator is written in
JAVA Language whereby it is developed in object-Oriented programming approach. The
UMJaNetSim architecture mainly consists of two important parts, namely the simulation
engine and the simulation topology [42]. Figure 4.1 shows the overall view of the

UMJaNetSim architecture.

<>
> COMPONENT
<>

Engine Topology

Figure 4.1 UMJaNetSim Overall Architecture

54

The simulation engine is the main controller of the entire simulation. It performs the event

task, GUI as well as input and output processing such as topology

saving and result logging.

The simulation topology consists of all the simulation objects, which are also referred to as
lati These simulation cc are the main subject of a simulation

P P

scenario, and these simulation components typically consist of a group of interconnected
network components such as router, switches, physical links and different type of source

applications.
4.1.1 Event Management Architecture

JavaSim object is main object in the UMJaNetSim simulator. JavaSim object itself is the main
component in the simulation engine. Under the event management architecture, the JavaSim
object manages an event queue, an event scheduler, and a simulation clock. Figure 4.2 shows

the event management architecture for the UMJaNetSim.

SimComponent

Figure 4.2 Event Management Architecture

Under the event management architecture, there are basically two main operations that are in
process. First, a simulation component will schedule an event for a target component to be
happening at a specific time using the enqueue operation. This target component can be others
component or the component itself. Then, the events are stored inside a queue and are sorted

by the event-firing time.

55

When a specific time is reached, the simulation engine will invoke the event handler of the
target component. In this time, the event scheduler will fetch and remove the first event in the

event queue. The target component will react to the event according to its behavior.

UMIJaNetSim uses an asynchronous approach of the discrete event model, where any event
can happen at any time. The SimClock object is the global time reference used by every
component in the simulation and managed by the simulation engine. The simulation time in

the UMJaNetSim is measured by tick and this tick can be converted to real time or vice versa.

4.1.2 GUI Management Architecture

The JavaSim object is the main controller under the GUI Management architecture. The

functionality of the UMJaNetSim GUI management includes handling of user inputs; perform

drawing as well as ing various indows. Besides that, there is a SimPanel

object that keeps track of the latest set of simulation p and the inter

among the components in order to present the simulation topology visually to the user. Thus,
the new topology can be designed easily. Figure 4.3 shows the GUI management architecture
for the UMJaNetSim.

D
|

i

A4 B
Topelogy Parameter Meter
U] View Dialogs Dialogs | |
| Vishle Area Cwtom | [Custom
| Dislogs Dialogs
1

Figure 4.3 GUI Management Architecture

Under the GUI management architecture, there are two common types of dialog, namely the

parameter dialogs and the meter dialogs. Each simulation component is associated with a

dialog that displays the list of p for the p M hile, a meter

dialog is normally used for graphical display of a particular output value of a component such

56

as utilization as well as cell loss. Besides that, the two types of dialogs are also associated
with one or many custom dialogs that show extra information about the information. These

custom dialogs are normally the OSPF routing table, VPN detail and others information.
4.1.3 Simulation Components

The SimComponent object is the main simulation object in the UMJaNetSim. It is a well-
defined base object with all the necessary interfaces that enable the interaction between the
simulation engine and the component. There will be an event handler in every simulation
component, which is invoked by the event scheduler in order to fire an event. All interactions
between simulation components are achieved through the sending of messages in the form of

a SimEvent.

Each of the SimComponent is associated with its properties that can be configured by using
the parameter dialog. There are many types of parameters for each of the SimComponent. All
of these parameters are objects that derived from a base object called SimParameter. By using
the SimParameter, all type of values can be setup easily without any programming effort from

the component designer.
4.2 UMJaNetSim API

After the study of the UMJaNetSim architecture, this section focuses on defining well-known
interfaces for simulation objects. The UMJaNetSim API provides a consistent way of creating
simulation comp (42]. The di ion of the UMJaNetSim API will provide insights

into some design issues of the simulator and prepare the ground for the actual creation of the

MPLS VPN components in the next chapter.
4.2.1 JavaSim

The JavaSim object is the main object in the UMJaNetSim simulator. JavaSim object
manages an event queue, an event scheduler and a simulation clock during the event
management and provides all GUI functions together with SimPanel under the GUI

management. The followings are some of the important method of the JavaSim object.

= javautil.List getSimComponents() — This method returns a list of all existing
SimComponent.

= long now() - This method returns current simulation time (in tick).

= boolean isCompNameDuplicate(String name) — This method ensures no duplicated name

for SimComponent.

void notifyPropertiesChange(SimComponent comp) — This method executes whenever
there are structural changes to the parameters.

« void enqueue(SimEvent e) — This method will enqueue an event that has been invoked.

= void dequeue(SimEvent €) — This method will dequeue an event when a specific time is

reached for that event to be executed.
4.2.2 SimEvent

Every SimComponent communicates with each other by enqueuing SimEvent for the target

For le, when A wants to send a cell to component B,

P P P

component A creates a SimEvent that specifies B as its destination, and enqueue the event.

The SimEvent object also contains a time so that this event is fired at exactly the specified

time.

There are two types of events, namely the public (well-known) events and private events.
Public events are defined in the SimProvider object. This event can be enqueued for itself and
or for another SimComponent. All private events are defined within the particular
SimComponent source itself and can only be enqueued for itself. The followings are some of

the important method of the SimEvent object.

= SimComponent getSource() — This method retrieves the source SimComponent.

= SimComponent getDest() — This method retrieves the destination SimComponent.
= int getType() — This method retrieves the event type.

= long getTick() — This method retrieves the event-firing time.

= Object [] getParams() — This method retrieves the event parameters.

58

4.2.3 SimClock

The SimClock object is the global time reference used by every component in the simulation
and managed by the simulation engine. The followings are some of the important method of

the SimClock object.

static double Tick2Sec(long tick) — This method converts ticks to seconds.
static double Tick2MSec(long tick) — This method converts ticks to milliseconds.
= static double Tick2USec(long tick) — This method converts ticks to microseconds.

= static long Sec2Tick(double sec) — This method converts seconds to ticks.
= static long MSec2Tick(double msec) — This method converts miliseconds to ticks.

= static long USec2Tick(double usec) — This method converts microseconds to ticks.
4.2.4 SimComponent

The SimComponent object is the main simulation object in the UMJaNetSim from the
topology view. Every components such as link, broadband terminal equipment, application.
switch and other network components must inherit this base class in order to obtain the

capability to interact with the simulation engine.

Every SimComponent has a reference to the main object of the simulation engine, the
JavaSim object, in order to access services provided by the simulation engine. Every
SimComponent also maintains a list of all its external parameters and a list of all its
neighbors. The neighbors of a component are all components that are directly connected to the
component. The followings are some of the imporiam properties and method of the

SimComponent object. -

= protected transient JavaSim theSim — This property is a reference to the main JavaSim
object.

= protected java.util.List neighbors — This is a list of all (directly connected) neighbors of
the SimComponent

= protected java.util.List params — This is a list of all external parameters of the

SimComponent

59

= Object [] complnfo(int infoid,SimComponent source, Object [] paramlist) - This method
provides a way for inter-component information exchange without sending run time
events.

= boolean isConnectable(SimComponent comp) — This method is called by the simulation
engine when a new component is about to be connected to this component. This method
will verify whether the new p can be d to this p

= void addNeighbor(SimComponent comp) — This method is called by the simulation

engine when a new p is d to this p
* void removeNeighbor(SimComponent comp) — This method is called by the simulation

engine when a new is di d to this

P

* void copy(SimComponent comp) - This method is used to copy parameter values from

another SimComponent of the same type.

void reset() — This method performs a reset operation in order to bring the status of the

component back to the same status as if it is just newly created.

* void start() - This method performs any operations needed when the simulation starts.

= void resume() — This method perform any operations needed when the simulation need to
be resume. One possible use is to capture any special changes /that have been done by the
user during the pause period.

* void action(SimEvent e) - This is the event handler of this component, and will be called

by the simulator engine whenever a SimEvent with this component as the destination

fires.
4.2.5 SimParameter

Every SimComponent has internal parameters or external parameters, which can be shown or

accessible by users. All extgrnal parameters must inherit SimParameter. By extending

SimP: the p obtain p logging and meter display features

automatically. The parameter can simply holds one single value, such as an integer. It also can

represent a complex piece of information, such as the entire routing table of a network router.
In some cases, the parameter itself can create and manage additional custom dialogs. A

complex parameter type may just use a JButton that opens up new custom dialogs when

invoked. The choice of components to use is dependent on the type of interaction needed by

60

the component designer. The followings are some of the important method of the

SimParameter object.

= String getString() — This method returns a String rep ion of the p value.
This is used for logging purpose.

= void globalSetValue(String value) — This method supports setting of the same parameter
values for multiple components in one command.

= int getValue() — This method will read a value.

= void setValue(int val) — This method will write a value.

= JComponent getJComponent() — This method will return a Java swing component and its

name.

4.3 MPLS VPN Architecture

In chapter two, a brief introduction on MPLS, VPN, MPLS VPN and MP-iBGP have been
discussed. This section will provide a more detailed description on MPLS VPN that based on
MP-iBGP. Besides that, it will cover the basic configuration steps that are necessary for

MPLS VPN architecture.

One of the simplest VPN topologies using the MPLS VPN architecture is an Intranet between
multiple sites that belong to the same organization. In order to provision the VPN service

across the MPLS VPN backbone, a number of steps need to be followed. [1]

= Define and configure the VRFs.

= Define and configure route distinguishers.

= Define and configure the import and export policies.
= Configure the PE-CE links.

= Configure the MP-BGP.

= Packet Forwarding

6l

4.3.1 Configuration of VRFs

The first step in provisioning a VPN service based on MPLS architecture is to define and
configure the Virtual Routing and Forwarding Instances (VRFs). Under this process, a VRF
name is defined for each VPN in a PE router. The VRF name is case sensitive. After the VRF
is defined, further configuration is needed to provide routes for the tables and to create

associated MPLS labels.
4.3.2 Configuration of Route Distinguishers
After the VRFs have been defined, the route distinguish need to be figured. In the

MPLS VPN architecture, each VPN must be capable of using the same IP prefixes as other

VPNs as long as no communications between each other. Thus, it is necessary to prepend a

route distinguisher to the Ipv4 address to make it unique. However, the route distinguisher
mechanism doesn’t allow multiple customers within the same VPN using the same addressing

scheme within their sites.

The route distinguisher is a sequence of 64 bits and is different for each VPN. The route
distinguishers are encoded as Figure 4.4. When the type field is zero, the value field will
contain 2 bytes of administrator sub field and 4 bytes of assigned number sub field. The
administrator sub field must contain the Autonomous System Number (ASN) and the
assigned number sub field contains a number from a numbering space provide by the service
provider. When the type field is one, the value field must contain 4 bytes of administrator sub
field and 2 bytes of assigned number sub field. The administrator sub field must contain an IP
address and the assigned number sub field contains a number from a numbering space provide

by the service provider. Example of a route distinguisher based on type 0 is 100:26 [26].

2 Bytes 6 Bytes

TYPE VALUE

Figure 4.4 Route Distinguisher Structure

62

4.3.3 Configuration of Import and Export Policies

The routes are advertised across the MPLS VPN backbone through the use of MP-iBGP and
any routes learned via MP-iBGP are placed into the VRFs of interested parties. Thus, extra

information is needed by the PE router to process any route that it received.

Although the route target provides the mechanism to identify which VRFs should receive the
routes, it does not provide a facility that can prevent routing loop. In order to prevent routing
loop where routes learned from a site are advertised back to that site, the site of origin (SOO)
identity is needed. Figure 4.5 illustrates the functionality of SOO. The figure shows that BPK
PE-router receives an MP-iBGP update for 202.185.107.0 from the FSKTM PE-Router. This
update contains a SOO of 1:13 that same as the one which configured for the UM VRF on the
BPK router. Thus, the route is not advertised to the UM BPK Router.

The last step in the configuration of each VRF is the addition of import and export policies for
the VRF to use. The route target must be configured to specify the routes. The import policies
will import specific route target value into the VRF and the export policies will export or

advertise the route target value to other PE routers.

______________________ Update for
poommesoosoTTooooen e 202.185.107.0/24 not
| ‘ UM Sie QU advertised as SOO

' BPK equal to the one

' 5 configured for this site

Figure 4.5 SOO BGP Extended Communities

63

The BGP ded ity attribute ins the site origin and the export and import
route target. Each of the extended community attributes is encoded in 8 bytes. The first two
bytes define the attribute type and the next six bytes hold the value of attribute. The route
target extended community has a type code of 0x0002 or 0x0102. The SOO has a type code of
0x0003 and 0x-0103. Figure 4.6 shows the structure of the BGP extended community

attribute format.
4.3.4 Configuration PE-CE Links

To provide a VPN service, the PE router needs to be configured so that any routing
information learned from a VPN customer interface can be associated with a particular VRF.
If the routes learned across an interface are associated with the particular routing protocol, the
routes are installed into the associated VRF. If the routes don’t exist, the routes are placed in

the global routing table.

Under the PE-CE link configuration, there are basically four types of configurations, namely
the static routing, RIP version 2, standard BGP-4 and the OSPF. This project only concerns
with the static routing configuration. The static routing is a good choice for deployment when
the site only has one entry point into the service provider network. This is because there is

little to be gained by d: ically learning the site via PE-CE link.

A static route for every network beyond the CE-router must be configured into the correct
VRF rather than the global routing table on the PE-router that connects the site. This is to

make sure that the address is not valid across multiple routing tables.
4.3.5 Configuration of MP-BGP

MP-BGP is an extension of the existing BGP-4 protocol to advertise customer VPN routes
between PE routers that learned from connected CE routers. All MP-BGP sessions are
internal BGP sessions because the sessions are between two routers that belong to the same
autonomous system. This MP-iBGP update contains the VPN-IPv4 address, MPLS label

information and the extended BGP communities.

64

2 Octets 2 Octets 4 Octets

AS # 32 Bit Value

High-order byte of the type field 0x00
Administrator subfield: 2 Octets (AS #)
Assigned Number subfield: 4 Octets

2 Octets 4 Octets 2 Octets

High-order byte of the type field 0x01
Administrator subfield: 4 Octets (IP Address)
Assigned Number subfield: 2 Octets

Figure 4.6 BGP Extended Community Attribute Format

When a BGP session is established between two peers, an OPEN message exchanges initial
BGP parameters, such as the autonomous system number used by the BGP neighbors. The
OPEN message can contain optional parameter. When the multiprotocol extension is
introduced, two new optional attributes are introduced. The attributes are multiprotocol
reachable NLRI and multiprotocol unreachable NLRI. The MP_REACH_NLRI announces
new multiprotocol routes and it carries a set of rcachal;le destinations together with the next
hop information to be used for forwarding to these destinations. MP_UNREACH_NLRI
revokes the routes previously announced by the MP_REACH_NLRI and it carries a set of

unreachable destinations.

When a PE-router sends an MP-iBGP update to other PE-routers, the MP_REACH_NLRI
will contains some attribute like addressing family information, next hopping information and
NLRI. The address family information is set to AFI=1 and sub-AFI = 128 in MPLS VPN. The

next hop information will be the next-hop address information of the next router on the path

65

to the destination. In MPLS VPN, the next hop information is the advertising PE-router. The
NLRI will contain the length of label plus the RD, the 24 bits label and the route distinguisher
plus the IPv4 prefix.

After the VRFs have been defined, each VRFs inject routes into the BGP and advertised this
route through MP-iBGP across the MPLS VPN backbone. Before these routes are imported
into any VRFs, the BGP has to make some decision. First, all the relevant routes are grouped
to compare. Before the PE-router can select routes, it has to know which VPN routes exist and
which of the routes should be comparable with each other by the BGP selection process.
When the PE-router receives the MP-iIBGP update message, it will take all routes with the
same route target as any of the import statements within the VRF. Then, it will consider all

routes that with the same route distinguisher as the one assigned to the VRF being processed.

Finally, the PE router creates new BGP paths with a route distinguisher that is equal to the

route distinguisher configured for the VRF that is being processed.

After the selection process is executed, the import process will import routes into all VRFs
and filter any unwanted routing information from the particular VRFs. Figure 4.7 shows the
MP-iBGP filtering. The PE router only accepts the route target that has been configured in the

import route target list for that VRFs.

Import RT=yellow ~ VPN-IPv4 update:
/ M| RD);Not1, Next-hop=PE-X
REs for vens—%_[] [__PE 500=Site1. RT=Green,
yollow Label=XYZ
green nd v
— MP-iBGP sessions VPN-APw
RO:Net?. N
800=8ite1, RT=Red,
Import RT=green e . iz o

Figure 4.7 MP-iBGP Updates Filtering
4.3.6 Packet Forwarding

After all the VPN routes are propagated across the MPLS VPN backbone, the data packet can
be forwarded to the destination based on VPN label and the MPLS label. PE routers now store
two kinds of labels in their LFIB. The first labels are learned through the TDP/LDP protocol

and assigned to IGP routes and the second labels learned through MP-BGP and assigned to

66

VPN routes. The first labels are called IGP Labels and the second labels normally called VPN
Labels. Figure 4.8 shows how the IP packet is forward across the MPLS VPN backbone.

First, the ingress PE (PE1) will receive normal IP Packets from CE router (CE1). PEI router
does “IP Longest Match” from VRF and find iBGP next hop PE2 and impose a stack of labels
which are the exterior label or VPN label and interior label or IGP label. Then, the IP packet
will reach the P1 router based on the IGP label. When P1 router receives the IP packet, it will
switch the packets again and swap to another IGP label to P2.

When P2 receive IP packet, it will lookup the IGP label and switch to the next router. P2 is
the penultimate hop for the BGP next-hop. Thus, P2 will remove the top label and only left
the VPN label. P2 will send the IP packet to the PE2 router. When PE2 router receives the IP
packet, it will perform single lookup based on the label corresponding to the outgoing

interface. Then PE2 will pop the VPN label and send the IP packet to the destination

Panultimate Hop Popping

P2 is the penultimate hop

for the BGP next-hop

P2 romava the top labal

This has been requested
PE2

VPN Label

1GP Label(PE2)
VPN Label

Figure 4.8 MPLS VPN IP Packet Forwarding Process

4.4 System Requirement
The system requirement to develop the MPLS VPN simulator is categorized into functional

requirement and non-functional requirement. The following section will discuss the functional

requirement and non-functional requirement of the MPLS VPN simulator.

67

4.4.1 Functional Requirement
This section describes the functional requirement of the MPLS VPN simulator.

= The simulator will allow the user to configure the VRFs. The user will be able to
configure the route distinguisher, import and export policies.

» The simulator will allow the user to configure PE-CE links.

* The simulator will allow the user to configure MP-iBGP.

= Each PE-router will be able to setup many VRFs. The PE-router should be able to connect
to multiple VPNs at one site.

= The simulator will run MP-iBGP during the advertising of the customer VPN routes.

= The simulator will support different types of VPN topologies, such as Intranet topology,
Intranet and Extranet Integration topology and Central Services topology.

= P router will know how to perform label lookup as well as pop up label for MPLS VPN
and non MPLS VPN.

= The simulator will perform label stacking.

= PE-Router will perform forwarding table lookup according to VPN and non-VPN.

= Logging Process
= The system should be able to record the VRFs that have been setup.
= The system should keep track or log all the process that are running while the

simulator is running.
4.4.2 Non-Functional Requirement
This section describes the non-functional requirement ofithe MPLS VPN simulator.
* Reliability

= The system should be reliable in performing its simulation functions and network

operations. For example, whenever a button is clicked, the system should be able to

perform some functionality or g some or animation to inform the user

what is happening.

68

= Usability
= The system should be user friendly. It will enhance and support rather than limit or
restrict the understanding of MPLS VPN in MPLS network.
* Human interfaces need to be intuitive and consistent with the user knowledge in order
to let them gain some knowledge through the simulator.
* Manageability
* The modules within the system should be easy to manage. This will make the
maintenance and enhancement works simpler and not time consumed.
= The system should not cause any damages to the current simulator after a new
component has been added.
= Flexibility

* The system should have the capabilities to take advantage of new technologies and

1 h

ina i nvi or

resources. The system should be able to i

platform.
4.5 Chapter Summary

This chapter covers the major analysis on the key features of UMJaNetSim simulator. The
overall architecture of UMJaNetSim is analysed in order to find out how the new MPLS VPN
simulator components can be integrated into the existing simulator without affecting the

performance and the output of the simulator.

The process of configuring MPLS VPN network also covered in this chapter. It provides a
good understanding of the MPLS VPN architecture as well as the steps required to configure

the MPLS VPN.

This chapter concludes by presenting the functional requirements and non-functional
requirements of the simulator. Details of system design will be discussed in the following

chapter.

69

