Chapter 2 Literature Review

In this chapter, a review on IP Multicast, computer simulation and UMJaNetSim is
presented. The first part of this chapter concentrates on IP Multicast. The second part
of this chapter concentrates on computer simulation. The last part analyzes

UMJaNetSim.

..

In section 2.1, an introduction of IP Multicast is p d. Ad: ges and app
of [P Multicast are the main topic to be included. This is followed by a description on

multicast address, IGMP, multicast algorithms and multicast protocols.

In section 2.3, a brief description on computer simulation is presented. This begins by

an introduction of the computer simulation. The following sections describe two

Aural

different programming approaches in developing a simul namely p
approach and object-oriented approach. Then, a brief description on Java is presented.
Next is an overview of computer network simulator, concentrating on UMJaNetSim

network simulators.

Section 2.4 is an analysis on UMJaNetSim. An overview of the architecture and
Application Programming Interface (API) of UMJaNetSim are presented in two
separate sections. These two sections will briefly describe the function and process

involved in three fundamental architectures and the main components in UMJaNetSim.

The final section in this chapter gives a summary of the chapter.

2.1 IP Multicast

2.1.1 Introduction

Today, Internet involves applications of one-to-one, one-to-many, many-to-many, and
many-to-one communication patterns. Unicast is one-to-one communication pattern
while many-to-one can be done by either unicast or multicast. However, no standards

exist for alternate and equivalent many-to-one application designs yet. (7]

e

(a) Multicasting

(b) Unicasting

Router
Source

Interested
Receiver

a1 K

(c) Broadcasting

Traffic

T

Figure 2.1 Three Approaches in One- to- Many Applications

For one-to-many and many-to-many communication patterns, packet forwarding can be
achieved in three different ways, which are multiple unicasting, broadcasting, and
multicasting. The first approach is a method where multiple unicast traffic is sent to
multiple destinations whereas the second approach broadcasts the traffic to entire
networks so that it could be received by the desired destination. However, these two
approaches are not efficient. [8] The first solution consumes a large amount of
bandwidth, while the second solution not only increases the traffic load but also creates

unnecessary traffic. By applying multicasting, only one packet is sent in order to reach

all interested receivers. In other words, I[P Multicast is a mechanism that sends a single
copy of an IP packet to all members in a multicast group, rather than sending out
multiple copies of an IP packet to all members. [9] It provides many of advantages and

improves efficiency compared to the other approaches.

2.1.1.1 Advantages of IP Multicast

One of the advantages of using IP Multicast is it can decrease network load. [10] IP
Multicast transmits only one packet by the source and replicates the packet only when it
is necessary. Hence, it utilizes less bandwidth compared to unicast or broadcast
approaches. The difference in bandwidth utilization is significant especially multimedia

traffic, such as movie applications, is involved.

Multicast can also be used in resource discovery. There are certain applications, such as
Bootstrap Protocol and Open Shortest Path First (OSPF), that uses multicast to find

available services. [10]

Multicast is also very important in distributing multimedia data. Nowadays, multimedia
application has become important in IP networks. Applications like audio-cast and
video-cast have become popular in the Internet. Instead of establishing point-to-point
connections to multiple participant hosts, multicasting is employed to send the
multimedia data. Using IP Multicast not only decreases bandwidth utilization, but also
provides flexibility in joining and leaving a group. [10]

2.1.1.2 Multicast Applications

Multicast applications can be either a sending source, a receiver, or both. A receiver
must express an interest to become a member of a multicast group before it could
receive any multicast from the multicast group. A source is not necessarily a member

of a multicast group.

Basically, multicast applications can be divided. into two types, i.e. one-to-many and

many-to-many. One-to-many is a communication pattern, which normally has a source

10

as the sender and multiple members as the receiver. Many-to-many applications involve
multiple senders and multiple receivers, in which a sender is also a receiver. Examples
for one-to-many are the transmission of corporate messages to employees,
communication of stock quotes to brokers, live transmission of news coverage, web TV,
distributed databases, distance learning, and so on. Examples for many-to-many

1 : licatine datah

applications are video and audio conferencing, P g

share whiteboard applications, multi-player games and so on.

2.1.2 Model of IP Multicast

[P Multicast is the transmission of an IP packet to group of zero or more hosts identified
by a single [P multicast group address. A multicast packet will be delivered to all
members of the multicast group. The membership of a multicast group is dynamic, in
which hosts may join and leave multicast groups at any time and anywhere. There is no
limitation to the total number of members. A host may join as a member in more than

one group at a time. [11]

IP Multicast is an extension of the implementation of Internet Protocol. [9] By adding
multicast to the [P networks, some extra protocols and modifications need to be defined

and implemented.

Firstly, multicast group addresses are required. A multicast group address is designed to
enable a sending source to specify the destination group. It also enables a host to

express its interest in joining and leaving a multicast group.

If a multicast source and a multicast receiver are in the same LAN, the multicast
receiver needs only to listen to all multicast packets that are sent to that particular
multicast group. However, when the multicast receivers are located some where in a
WAN, the multicast receivers must employ a protocol to inform a router so that the
interested multicast packets can be forwarded to the multicast receivers. [10] Hence,

IGMP is needed in both host and router to handle the joining and leaving of a multicast

group in a subnet. IGMP will notify multicast routing protocol in a router regarding the

multicast membership condition.

Multicast routing protocol is needed to construct the multicast packet delivery trees and
to perform efficient multicast packet forwarding. [9] There are various multicast
forwarding algorithms available today. Multicast routing protocol employs multicast
forwarding algorithms to establish a multicast tree and carries out multicast packet

forwarding.

Multicast applications for creating and managing the multicast data are also needed.

Figure 2.2 shows the basic model for IP Multicast.

Multicast
Source |
Multicast
Source 2

Interested
Receiver
for group 1
Interested
Receiver
for group 2

IGMP

Multicast

Routing
Multicast source and receivet are multicast Protocol
applications. S1 and M1 are in same

.~ group, while S2 and M2s are in same
group

E EEB

¢

0

Router

Figure 2.2 Basic IP Multicast Model

2.1.3 Multicast Group Address
Multicast is based on the concept of a group. [12] Each multicast group is assigned an
identification address, which is called multicast group address. Multicast receivers

express its interest in joining a group by informing the multicast group address to the

IGMP. Meanwhile, multicast group address is included as the destination address in

every multicast packet when it is sent out.

Class D IPv4 address is used for multicast group address, and the addresses range from
224.0.0.0 to 239.255.255.255. [11] However, Internet Assigned Numbers Authority
(IANA) maintains a list of registered IP multicast group. [4] Table 2.1 lists the
assignment of multicast group address from IANA.

Table 2.1 Assignment of Multicast Address from IANA

Multicast Addresses Name Descriptions
244.0.0.0 Reserved Reserved and not assigned
224.0.0.1- Reserved Link Local | Reserved for routing
224.0.0.255 Addresses protocols, other low level

topology discovery or
i protocol
224.0.1.0- Globally Scoped Assigned to multicast
238.255.255.255 Address applications
239.0.0.0- Limited Scope Reserved for site-local
239.255.255.255 Add dmi ively scoped
applications

2.1.4 Internet Group Management Protocol IGMP)
IGMP is a protocol that handles multicast group. It is implemented between hosts and
neighboring routers. IGMP helps routers to identify members of a multicast group in a

subnet. It allows a host to express interest to join and leave a certain multicast group.

IGMP is a companion to the IP protocol and is located at network layer. The IGMP
message is encapsulated in an IP packet with the protocol value of two. Figure 2.3
shows the position of the IGMP protocol in relation to other protocols in the network

layer, while Figure 2.4 shows the psulation of IGMP 2

Basically, operation of IGMP can be divided into 4 parts. There are joining, monitoring,

continuing and leaving. At first, a host must join a multicast group by informing

neighbouring router through IGMP Report message. The router is responsible to
monitor the membership condition for the multicast group by sending Query message
through IGMP. Hosts that are still interested in joining a multicast group should inform
router when a Query message is received. When a host decides to leave, it should also

inform the neighbouring router. [3]

IGMP ICMP

Network Layer

ig

ARP RARP

Figure 2.3 Position of IGMP in Network Layer

[heater [rrdua |

Frame header | Frame data J Trailer
T

Figyre 2.4 Encapsulation of IGMP Packet

Currently, three versions of IGMP have been defined. There are IGMP version 1[11],
IGMP version 2 [13], and IGMP version 3 [14]. IGMP version 3 is a draft specification
and is not deployed yet.

2.1.4.1 IGMP Version 1
In IGMP version 1, only two types of IGMP message have been defined, which are

Host Membership Query message and Host Membership Report message (hereafter it is

known as IGMP Query and IGMP Report respectively). [11] When a host wants to join
a multicast group, it sends an IGMP Report to join the multicast group to a
neighbouring router. However, in IGMP version 1, a host will not acknowledge a router

when it decides to leave a multicast group.

Meanwhile, a router sends an IGMP Query periodically to learn about the membership
condition in its subnet. A host responds to the query if it still wants to continue the
multicast group membership. An IGMP Reports is sent to inform the router the
multicast groups that it still interested in. To avoid simultaneous responses from hosts,
which may create extra traffics, random response timers are set in every host that would
like to send a reply. At the same time, the hosts will listen to the communication in the
subnet. If a report has been made for the multicast group that the host is interested in, a

duplicate Report will be suppressed. By doing so, unnecessary traffic is avoided. [11]

Newly join Joined
Group | Group 2

Report for
| Group1

a

Router
Membership
Group 1
Joined Joined Grouo 2
Group 1 Group 1
Group 2

Figure 2.5 Reporting Membership

If the router does not receive any confirmation for a previously joined multicast group
from the hosts in the subnet, the router assumes that no member exists in that particular
multicast group. [11] The membership condition in a subnet is passed to the multicast
routing protocol, so that multicast tree and forwarding decision could be made. Figure

2.5, Figure 2.6 and Figure 2.7 illustrate the mechanism in IGMP version 1.

Joined
Group |

Joined
Group 2

« Querv
Router
Membership
Group |
Joined Joined Group 2
Group 1 Group |
Grouo 2
Figure 2.6 Monitoring Membership
Joined Joined
Group | Group 2
Report for
Suppressed . Group 23t
Report for random time 2
Group | T - ¥
Group 1 at Router
ium’m{sed random time | s ¢ Membershi
eport for uppresse embership
Group2 == Repor o Group |
Group | G 2
Joined Joined Toup
Group 1 Group 1
Group 2

Figure 2.7 Continuing Membership

A multi-access network may have more than one router attached to the same network.

In this case, only one router is elected as a querier to be responsible for sending IGMP

Query message. The other routers are known as non-querier. They need only listen to

the IGMP Report in order to keep track of membership conditions in that subnet. The

election of a querier in IGMP version 1 depends on multicast routing protocol. [11]

2.1.4.2 IGMP Version 2
IGMP version 2 is an extension of IGMP version 1. IGMP version 2 enhances the
performance of IGMP version 1 and provides backward compatibility with IGMP

version 1. [4]

In general, there are 2 enhancements with four new inclusions in IGMP version 2.
Handling of membership leaving and election of querier in a multi-access network are
introduced in this version. In IGMP version 1, no mechanism is defined to handle
cancellation of a membership, while the querier election in a multi-access network is
determined by the multicast routing protocol. [4] The first enhancement minimizes the
leave latency whereas the second enhancement provides standardization in the election

of querier. If different querier electi hanism is impl d in different multicast

routing protocols, it may cause unexpected problems.

Leave message is introduced in IGMP version 2 in order to handle membership
cancellation. If the host that wishes to leave a multicast group is the last host that
responds to the IGMP Query message for that multicast group in the subnet, a leave
message is sent. Otherwise, it will leave the multicast group silently. This is because

other members still wish to join that multicast group. [13]

Two modifications were done on the existing Host Membership Report message and
Host Membership Query message. :

Host Membership Query message, which is known as Membership Query message in
IGMP version 2, is divided into two types, namely General Query message and Group-
specific Query message. The function of the General Query message is similar to the
Host Membership Query message in IGMP version 1. The newly introduced Group-
specific Query message enables routers to send a query for a specific multicast group.
Group-specific Query message is used to handle the membership leaving. When a
router is informed of a leaving event of a multicast group, it sends a Group-specific

Query message to learn whether there are other members that are still interested in

17

joining that group. [13] Figure 2.8, Figure 2.9 and Figure 2.10 illustrate the leaving

event in IGMP version 2.

Joined Joined
Group 1 Group 2
P — |
Silently leave Group 1, since Router
group 2, since itis the last
itis not the respond host Membership
last host to for Group 1 |,
respond the r ou Group |
aerylor Leaving Joined Group 2
roup Group 1 Group 1
Group 2
Figure 2.8 Leaving Multicast Groups
Joined Joined
Group | Group 2

=

L
n

Group-
specific Query |Router

B

r Group |
b i Membership
Group 1
Jined Joined Group2
Group 2 Group 1

Figure 2.9 Group-specific Query

There are two types of Membership Report message in IGMP version 2, namely
Version 2 Membership Report and Version 1 Membership Report. [13] The former

message is used to report to the router, which runs on IGMP version 2 while the latter is

used to report to the router that runs on IGMP version 1.

18

Joined
Group |

e | B
Group 1 at
random time
B

i Router
Suppressed Membershij
f== Repoi o Group 1
Group 1
Joined Group 2
Group 1

Figure 2.10 Respond to Group-specific Query or Report Membership

2.1.4.3 IGMP Version 3

IGMP version 3 introduces the support for Group-Source Report message. This
message is used to inform a router that the host wishes to receive traffic from a specific
source of a multicast group. [14] Previously, in IGMP version 1 and IGMP version 2, a
host is unable to specify the source in a multicast group that it would like to receive.
The members of the group will receive traffics sent to the multicast group from all

sources.

The other enhancement in IGMP version 3 is the inclusion of Group-Source Leave
message. [14] Similar to the Group-Source Report message, Group-Source Leave
message allows a host to leave a certain source in a multicast group. This means, a host
is able to inform the router when it is no longer interested in receiving traffic from a

specific source in a particular multicast group.

2.1.5 Multicast Forwarding Algorithms
As mentioned, IGMP is only concerned with the membership condition for multicast
groups between neighbouring routers and hosts in subnets. The multicast packets

forwarding is done by the multicast routing protocol in routers.

19

In IP Multicast, the membership for a multicast group is dynamic and the receivers are
located separately in the entire network. Hence, the routers may not know where to
forward multicast packets. Therefore, a multicast routing protocol is needed so that the
routers know where to forward multicast packets and the multicast packets could be
delivered to the correct destinations. The multicast packets from a multicast group must

be delivered to every single subnet, where at least one member exists for that multicast

group.

To achieve this, a multicast tree is constructed by using the multicast routing protocol. It
is used to forward multicast packets by the routers. There are a few different forwarding
algorithms employed by the multicast routing protocol to establish the multicast
forwarding trees. Basically, there are three techniques in constructing a multicast tree.
There are simple-minded, source rooted trees and shared trees. [7] These algorithms are
stated below.
e Simple-minded
-Flooding
-Spanning Trees
e Source rooted trees
-Reverse Path Broadcasting (TPB)
-Truncated Reverse Path Broadcasting (TRPB)
-Reverse Path Multicasting (RPM) :
o Shared trees .

-Core Based Trees

2.1.5.1 Flooding
Flooding is a simple algorithm. When a multicast packet is received, the router checks
whether it is a newly received multicast packet or it has seen this particular packet

earlier. In the former case, the received multicast packet is forwarded on all interfaces

20

except the incoming interface of the multicast packet. In the latter case, the received

multicast packet is simply discarded. Figure 2.11 shows the flooding algorithm.

The advantage of flooding is that a router is only required to keep track of the most
recent packets and does not need to maintain a routing table. Flooding could guarantee
that the multicast packet reaches all routers in the entire network. Indirectly, this assures
that all members will receive the multicast packet. However, flooding creates many
duplicate packets and increases the traffic load. Hence, flooding is not able to scale

widely. [9]

O Router
. Source

Subnet with
member

Subnet
without
member

— Accepted
packets path

Discarded
packets path

Figure 2.11 Flooding Algorithm

2.1.5.2 Spanning Tree

The spanning tree approach is implemented by selecting a subset from interconnected
links to be constructed as a tree structure. The tree is constructed such that only one
active path connects any two routers in the entire network. [10] Figure 2.12 illustrates

an example of a spanning tree in a network topology.

21

Spanning . Sub network
tree

(a) A network topology (b) An example of spanning
tree constructed

Figure 2.12 Example of a Spanning Tree

Multicast packets are forwarded through the interfaces, which are a part of the spanning
tree except the interface from where the multicast packets have arrived. Figure 2.13

shows the spanning tree algorithm in multicast packets forwarding.

O Router

. Source

. Subnet with
member

. Subnet network
without member
Multicast

— packets
forwarding
ath

—— Spanning
tree

Figure 2.13 Spanning Tree Algorithm

22

Spanning tree is relatively easy to implement. It assures the loopless of multicast path to
all routers in the entire network. [9] If compared to flooding algorithm, spanning tree
creates less unnecessary traffic in the network. However, in spanning tree approach,
traffic is concentrated on a set of interconnected links. This may lead to traffic
overloading on certain links. Furthermore, the delivery path between source and

multicast receivers is not necessarily the most efficient path.

2.1.5.3 Reverse Path Broadcasting (RPB)

RPB uses the concept of spanning tree algorithm. A spanning tree is implicitly
constructed for each router in which a source is attached. [10] In other words, several
spanning trees rooted at different source routers are constructed for each sending
source, instead of building a network-wide spanning tree. This means if there are three

sending sources in a multicast group, there will be three different spanning trees

available, one for each source.

O Router
Number indicates the

cost of a link . Source

. Subnet with
member

. Subnet
without

member

Multicast
— packets

forwarded

Multicast
packets not
forwarded
Constructed
distribution
tree

Figure 2.14 Reverse Path Broadcasting Algorithm

When a multicast packet arrives at a router, the router checks if the incoming link of the

received multicast packet is the shortest path towards the originating source of that

23

multicast packet. If it is, the multicast packet is forwarded to all interfaces except the
incoming interface. Otherwise, the packet is discarded. Hence, in RPB, unicast routing
information is used as a reference in determining whether a link is the reverse shortest
path back to the source during establishment of spanning tree. Figure 2.14 shows the
RPB algorithm.

To improve the performance of RPB, a router may check whether the neighbour’s
router on the outgoing interface is also on the shortest path towards the source of a
multicast packet before forwarding is done. [10] A multicast packet is only forwarded to
the reverse shortest path neighbour router. By applying this mechanism, duplicate

multicast packets can be avoided. Figure 2.15 shows the enhanced RPB algorithm.

O Router
Number indicates the
cost of a link . Source
. Subnet with
member
. Subnet
without

member

Multicast
— packets
forwarded
Constructed
distribution
tree

Figure 2.15 Enhanced Reverse Path Broadcasting Algorithm

RPB is relatively efficient and easy to implement. It employs existing unicast routing
information as a reference in forwarding a multicast packet. Hence, the router is not
required to remember the spanning trees. Furthermore, if the cost of a link state is the
same in both directions, the multicast packet is forwarded along the shortest paths. This
guarantees efficiency in delivery. In addition, since there may be several of spanning
trees for multiple sources multicast group, the traffic is distributed over multiple paths.

Therefore, it indirectly avoids traffic concentration. However, one of the major

24

limitations in RPB is that RPB does not take into account the information about
multicast group membership when constructing the spanning trees. [4] This leads to

unnecessary delivery of multicast packets to a site where no member exists.

2.1.5.4 Truncated Reverse Path Broadcasting (TRPB)
TRPB is another enhanced RPB, which is designed to overcome a few limitations in
RPB algorithm. [4] TRPB avoids from forwarding multicast packets to subnets where

no members exist.

O Router
Number indicates the
cost of a link . Source

Subnet with
member

Subnet

without

member

Multicast
— packets
forwarded
Constructed
distribution
tree

Figure 2.16 Truncated Reverse Path Broadcasting Algorithm

Information in IGMP is used to tear down the delivery path to the subnets that does not
have any group members. However, TRPB does not solve the unnecessary delivery of
multicast packets to the routers that do not wish to receive and forward multicast
packets due to no existence of members in the attached subnets. [9] Figure 2.16 shows
the TRPB algorithm.

2.1.5.5 Reverse Path Multicasting (RPM)
RPM is an enhancement of RPB and TRPB. It solves the limitation in TRPB by adding
a prune function. It is used to inform routers not to forward the packets to routers that

are not interested in particular multicast packets.

25

In RPM, multicast packets are only forwarded toward routers that are on the path
leading to the leaf routers, which have members inside the attached subnets. However,
the first multicast packet received by routers is forwarded based on TRPB. If there is
no member in every subnet that are attached to a leaf router, the leaf router will inform
its upstream router not to forward the multicast packets towards it. This can be done by
sending a prune message. Once a router receives a prune message from an outgoing
interface of a multicast group from certain source (hereafter it is refer to (S, G), where S
is the source and G is the group), the router stops forwarding that particular multicast
packet through that interface. If an upstream router does not have any member attached
to it in the subnet, and it receives prune message form all the downstream routers, the
upstream router will trigger a prune message to its upstream router towards the sending
source. Finally, a distribution tree is implicitly established. The prune message is
always sent only one hop back towards the sending source. [4] Figure 2.17 shows the
RPM algorithm.

O Router

Number indicates the
cost of a link I . Source

.\ Subnet with

member

Subnet
without
member
Multicast
— packets
forwarded
e Constructed
distribution
— tree
Prune

message

Figure 2.17 Reverse Path Multicasting Algorithm
Since the membership condition is dynamically changing, the distribution tree must be
periodically refreshed. This is to ensure that the new members along a previously

pruned path can receive the desired multicast packets at minimum latency. [10]

26

Inappropriate refreshment handling may increase the join latency for multicast group
members. Besides, in RPM, routers need to maintain state information on multicast

distribution trees for each pair of multicast group and multicast sending source. [10]

2.1.5.6 Core Based Trees (CBT)
CBT [15] is a shared tree algorithm. CBT constructs a single delivery tree that is shared
by all members in a multicast group. It is almost similar to the spanning tree algorithm,

except that CBT allows different spanning trees for different multicast groups. [4]

In CBT, a set of routers is elected to act as core routers, which are the root of the
distribution tree. [15] One multicast tree is probably rooted at one of the router from the
core router set. Each host that would like to join a multicast group will send a join
request towards the core router. On the path towards the core router, intermediate
routers mark the interface where a join request is received. The combination of the

information in all routers creates a distribution tree for a multicast group.

Each sending source for a multicast group is also sending its traffic toward the core
router. The core router will forward the multicast packets based on the constructed

distribution tree. Figure 2.18 shows the CBT algorithm.

Join requested from a multicast member and multicast packets sent by a source are done
by unicasting. At the core router, multicast packets are multicast towards the members

of the multicast group.

Compared to other source rooted tree algorithm, such as RPM algorithm, CBT needs
only one distribution tree for one multicast group, instead of creating multiple
distribution trees for multiple multicast sending sources. Hence, less information is
maintained in a CBT router. Besides, CBT conserves network bandwidth. This is
because routers are not required to forward multicast packets to all routers in the entire
network periodically and are not required to wait for pruning from the downstream

routers. [4] However, CBT may create traffics concentration as all traffic travels toward

27

a core router. In addition, the path used to deliver multicast packet from a source to
multicast group members is not necessarily the most efficient path because all multicast

traffic traverses the core router before reaching the members.

O Router

Number indicates the
cost of a link . Source
Subnet with
member

Subnet
without
member
Multicast
packets is
unicast to
core router
— Multicast
packets flow

w=== Constructed
distribution
tree

—> Join request

Figure 2.18 Core Based Trees Algorithm

2.1.6 Multicast Routing Protocols

There are many multicast routing protocols available today. Each of the protocols has
its strengths and weaknesses. In general, existing multicast routing protocols can be
classified into three types according to the method in establishing of the multicast tree.

There are Reverse Path Multicast, Membership Advertisement and Center Based Trees.

[2]

These three classes of multicast routing protocols can be further divided into two
groups, namely dense mode and sparse mode. [16] Dense mode approach assumes that
the memberships of a multicast group are densely distributed and bandwidth is

sufficient. Hence, dense mode multicast routing protocols mostly rely on flooding to

28

propagate group information to all network routers. On the other hand, sparse-mode
multicast routing basically assumes that the multicast group members are sparsely
distributed throughout the network and bandwidth is limited. Thus, sparse mode
multicast routing protocols rely more on selective techniques to set up and maintain
multicast trees. [17] The multicast routing protocols are stated as below.
e Dense Mode Multicast Routing Protocols
-Reverse Path Multicast
-Distance Vector Multicast Routing Protocol (DVMRP)
-Protocol Independent Multicast — Dense Mode (PIM-DM)
-Membership Advertisement
-Multicast extension to Open Shortest Path First (MOSPF)
e Sparse Mode Multicast Routing Protocols
-Center-Based Trees
-Core Based Trees
-Protocol Independent Multicast — Sparse Mode (PIM-SM)

2.1.6.1 Protocol Independent Multicast — Dense Mode (PIM-DM)

The motivation for designing PIM-DM is to provide the construction of delivery trees in

densely distribution pattern of multicast group bers for PIM archi [4]

PIM-DM employs RPM to establish the delivery tree. It is a data driven protocol, where
the delivery tree is established on the first received’ multicast data. PIM-DM constructs
different delivery trees for gach pair of source and destination group. Each delivery tree

is a spanning tree to all multicast receivers rooted at the multicast source.

The operation of PIM-DM is very simple. Initially, PIM-DM assumes that when a
source starts sending a multicast packet for a multicast group, all hosts in the entire
network are the members for that multicast group. [18] Hence, when a router receives a
new (S, G) multicast packet from an interface where it is the shortest path back to the
sending source (hereafter known as Reverse Forwarding Path (RPF)), the multicast

packet is forwarded to all downstream interfaces. The forwarding branches of the tree

29

are explicitly pruned if no member exists at those branches. A more detail description is

given below.

When a source sends multicast packets to a multicast group, the router will check
whether the (S, G) multicast forwarding entry exists. If it does, the multicast packet will
be forwarded according to the forwarding entry. Otherwise, a new entry is created for
that (S, G) multicast packet. The entry includes source address, multicast group address,
the incoming interface and a list of outgoing interfaces. [18] If the multicast packet is
coming from a reverse shortest path back to the source, the multicast packet is

forwarded to all interfaces except the incoming interface.

At the leaf routers, if there is no member exists at the downstream subnet, a prune
message is sent to upstream routers towards the source, so that the (S, G) multicast

packets will not be forwarded to the routers.

On the other hand, PIM-DM support graft mechanism. It enables a previously pruned
branch of a distribution tree to receive multicast packets from an upstream router
immediately when a new member joins just before the periodical broadcasting occurs.

A graft request is sent toward the sources of a multicast group.

As implemented in RPM algorithm, PIM-DM includes not only periodical flooding but
also waits for a new set of prune messages. This allows PIM-DM to reinitiate the
construction of the delivery tree so that the newly joined members could receive

multicast traffics in a short latency.

One of the advantages of PIM-DM is that it is relatively simple to implement. Besides,
it is flexible, as it does not depend on the unicast routing protocol. PIM-DM works well
for a multicast group that is densely distributed in a campus network, but not for
multicast group members that are sparsely distributed over a wide-area network. This is

because the periodic broadcast behavior would affect performance. [18]

30

2.1.6.2 Di Vector Multi Routing Protocol (DVMRP)
DVMRP [19] was the first protocol defined in RFC 1075 to support multicast routing.

It was driven from Routing Information Protocol (RIP). It has been widely used on the
Multicast Backbone (MBONE) [20].

Initially, DVMRP used TRPB algorithm to construct the distribution tree. Later on,
RPM is employed in order to enhance performance of DVMRP. [10] Hence, the
operation of DVMRP is generally similar to PIM-DM. The main difference between
DVMRP and PIM-DM is that PIM-DM is independent of the unicast routing protocol
that is used in the network while DVMRP makes use of its own RIP-like method to
compute the required unicast routing information. [9] DVMRP runs two routing
protocols in order to support the unicast traffic and multicast traffic. Thus, DVMRP
contains its own integrated unicast routing protocol. Routing table update that consists
of previous hop router, source subnet and shortest path to the source subnet, is
exchanged periodically between the DVMRP capable neighbor routers. A multicast
forwarding table is constructed from the routing table, the membership information
from IGMP and the received prune message. The created delivery tree in DVMRP
provides the shortest path between the source and each multicast receiver in the group,
based on the number of hops in the path. The DVMRP routing table update is also used

for leaf router detection.

DVMRP provides tunneling multicast traffic across the parts of an IP network that have

not support multicast. [4] ,

One of the advantages of DVMRP is it is relatively simple to implement. Another
advantage is the modest processing demands that DVMRP places on routers. [7]
However, DVMRP is more complex than PIM-DM. [9] The other weakness in DVMRP
is the amount of multicast routing state information that must be stored in the multicast
routers is large. All the multicast routers must contain state information for every (S,
G). Hence, DVMRP does not scale well in sparsely distributed multicast members over

a large network.

31

510916299

AEDDIISTAKAAN 1INIVERSITI MALAYA

2.1.6.3 Multicast extension to Open Shortest Path First (MOSPF)
MOSPF [21] is defined in RFC 1584 and it is an extension to the unicast routing
protocol, Open Shortest Path First (OSPF). It is built on top of OSPF version 2 in order

to support multicast routing in the existing OSPF routing protocol. [22]

MOSPF is intended for implementation within a single routing domain or a network
controlled by a single organization. MOSPF is dependent on the use of OSPF as the
accompanying unicast routing protocol. Hence, link-state information is used in

constructing multicast distribution trees. [23]

In MOSPF, a router periodically collects information about multicast group
membership from IGMP. Then, this information is flooded to all other routers in the
routing domain along with link-state information. Routers will use this update
information to have a view on the membership information in the entire network, as
what is done on OSPF. The routers understand the topology of the entire network and
membership condition. Hence, the routers can independently calculate a least-cost
spanning tree with the multicast source as the root and the group members as leaves.
Since all routers periodically share link-state information, the distribution tree

calculated at all routers will be same. [23]

Similar to DVMRP and PIM-DM, different distribution tree is calculated for each (S,
G) multicast packets. However, MOSPF does nét support tunnelling. [22] In fact,
MOSPF does not scale well since it has to flood the link-state information among the

routers periodically.

2.1.6.4 Core Based Trees (CBT)

CBT [24] is defined in RFC 2189. It is a centre-based protocol, which implements CBT
algorithm. CBT constructs a single tree that is shared by all members of the group.
Multicast traffic for the entire group is sent and received over the same tree, regardless

of the source. [25]

32

A CBT shared tree has a core router that is used to construct the tree. Routers join the
tree by sending a join message towards the core router. When the core router receives a

join request, it returns an acknowledgment to the routers using the reverse path, thus

forming a branch of the tree. In order to d latency, acknowled, of join
messages may be sent back by the upstream router, which is already become one of the
branches on the path toward the core router. The router that sent the join is then
connected to the shared tree. A sending source will send multicast packets to the core
router and then the core router will forward the multicast packet to the distribution tree.

[24]

Using shared tree can reduce in the amount of multicast state information that is stored
in individual routers. Besides, shared tree is relatively easy to construct, and it reduces
the amount of state information that must be stored in the routers. However, as stated in
section 2.1.5.6, CBT aggregates traffic onto a smaller subset of links, resulting in a
concentration of traffic around the core, which may degrade the performance of CBT.
Hence, multiple cores are used to support load balancing and avoid the traffic

concentration.

2.1.6.5 Protocol Independent Multicast-Sparse Mode (PIM-SM)

PIM-SM [26] is defined in RFC 2362. Similar to the CBT, PIM-SM is designed to
restrict multicast traffic only to routers that are interested in receiving it.

PIM-SM constructs a multicast distribution tree rooted at a router called a rendezvous
point (RP), which has almost similar role as a core router in CBT. [27] However, PIM-
SM is more flexible and efficient than CBT. In CBT, only group-shared trees are
constructed whereas for PIM-SM a multicast group member may choose to construct
either a group-shared tree or a shortest-path tree. [23] This means the shortest path
distribution tree can be created in PIM-SM from every member to every source in a

multicast group.

33

Initially, a group-shared tree is constructed to support a multicast group. This tree is
formed when the senders and receivers of a multicast group report to the rendezvous
point. This is similar to CBT. Once the distribution tree is constructed, a member router
can request a connection to a particular source via the shortest path tree by sending a
join message to the source. Once the shortest path from source to receiver is created, the
extraneous branches through the RP are pruned. Different types of trees can be selected

for different sources within a single multicast group. [23]

2.2 Reviews on Computer Simulation

One of the objectives of this study is to experi Ily simulate, test and eval PIM-
DM multicast routing protocol through a simulation environment. Hence, computer

simulation is studied.

2.2.1 Computer Simulation
Three general approaches are employed to evaluate the performance of a system. There

h 1

are measurement tools, analytical iques and si ion. [28] M tool is

used for real networks [29], while analytical techniques make use of a system of
equations or mathematical solution to predict the result and performance of a network.
A simulation uses a computer to evaluate a model numerically. It determines or
estimates the performance and the characteristic of'a model based on the data collected
during simulation. [30] |
Computer network simulation can produce dynamic environment and illustrate the
reality as well as the complexity of the actual network. It is an effective tool to analyse
and evaluate the behaviour of a network without using an actual network. Furthermore,
simulation allows testing on various types of new topologies. Hence, to achieve the

objective of the study, it is more suitable to use simulation as an evaluation tool.

34

Computer simulation is generally divided into three categories based on the simulation
approach. These simulation approaches are Monte Carlo, Continuous and Discrete
Event. [5] Monte Carlo simulation is a method that does not require explicit
representation of time whereas Continuous simulation uses continuous function of
variables within the simulation. Discrete Event simulation allows alteration of program
variables at any finite number of times during simulation. However, in an actual

simulation, a combination of different techniques are involved.

In general, simulation is divided into three main fields. There are model design, model

execution and model analysis. [6] At the first stage of the computer network simulation,

amodel of a theoretical or actual network is designed. Basically, the ch istic of a
network is studied and then compiled into a simulation program by using a
programming language. The next step is to execute the simulation. Normally,
simulation is executed on a model and each model has a set of predefined input to be
executed. Then, the output from the execution is analysed in order to obtain the desired

result. [31]

A model is an abstraction of a system intended to replicate some properties of that
system. [32] A model represents the characteristics and the problem domain of a system
simulated. A model must conform to the objective of a simulation. A simulation model
can consist of a collection of objects that interact with each other.

:
2.2.2 Programming Approach and Language
A network simulator is developed with a programming language on certain

programming approach. An efficient and powerful simulator is highly related to the

prc ing 1 and the prc ing approach.

p

2.2.2.1 Approach
In general, two programming approaches are used to develop a network simulator.

There are procedural approach and object-oriented approach.

35

Procedural approach utilizes procedural prc ing 1 such as Pascal, C and

FORTRAN. Procedural approach tends to be action-oriented. Groups of action that

perform some common tasks are formed into a function or procedure. These functions

are grouped to form a program. [33] Procedural app h bines all the function or
procedure step by step from start to finish. It corresponds to a step-by-step list of
computations. Since network simulator requires concurrent processing to simulate the

real network, it is not suitable to implement procedural approach in network simulator.

An object-oriented approach is implemented with object-oriented programming
language. Examples of object-oriented programming languages are Java, C++,
Smaltalk and so on. In the object-oriented approach, software is a collection of discrete
objects that encapsulate their data and functionalities to model real world objects. [36]
The primary concepts of the object-oriented approach are encapsulation, inheritance and

polymorphism [37].

Encapsulation allows an object to be associated with a set of properties and methods.
The implementation data is hidden from the user. Inheritance enables sub classes to be
defined from a super class. Each sub class has common properties and method in the
super class. Polymorphism allows objects to behave differently in different situations.

These characteristics offer an advantage in developing a network simulator.

An object orientation produces systems that are easier to evolve, more flexible, more
robust, and reusable than Procedurﬂl approaches. It is a way to develop software by
building self-contained modules that can be more easily replaced, modified and reused
Furthermore, object technology emphasizes modelling the real world. Hence, it

provides a stronger equivalence of the entities in the real world.

From the above comparison, an object-oriented approach is a better choice for creating
a network simulator. There are many object-oriented languages available. Since the
simulator used in the study is written in Java, in the next section, Java programming

language is discussed.

36

2.2.2.2 Java

Java is an object-oriented programming language developed in Sun Microsystems and
was introduced in late 1995. [37] It is an interpreted platform independence
programming language. In Java, the source code is translated into instructions by Java
compiler then Java Virtual Machine is used to interpret these instructions. [37] Java
Virtual Machine consists of an interpreter and a run-time system. The Java compiler
generates byte-codes for the Java Virtual Machine (JVM), rather than native machine
code. When running a Java program, Java interpreter is used to execute the compiled
byte-codes. Since Java byte-codes are platform-independent, Java programs can run on

any platform that the JVM is ported to.

Java is a dynamic language. [35] Any Java class can be loaded into a running Java
interpreter at any time. It also provides a lot of high-level support for networking.
These features enable Java interpreter to download and run code from across the

Internet.

Java is designed based on C++ by removing some of C++ features, which are poor
programming practices or were rarely used. Hence, it is a simple language that a

programmer could learn quickly.

Java provides high robustness because it allows extensive compile-time checking for
potential type-mismatch problems. [34, 35] Besides, Java can effectively allocate and

reallocate memory in run time. It could prevent occurrence of error during run time.

Java is a high security language. [34] Since Java does not use pointers to direct
reference of memory locations, Java has a great deal of control over the code that exists

within the Java environment.
Finally, Java supports multiple, synchronized threads that are built directly into the Java
language and runtime environment. Synchronized threads are extremely useful in

creating distributed, network-aware applications. [35]

37

2.23C Network Simulat:

P

There are various types of network simulators available. Basically, these simulators can
be divided into two categories. There are general-purpose simulators and special-
purpose simulators. A general-purpose simulator is designed for a wide range of
network simulations, while a special-purpose simulator is developed to target a
particular area of research. [38] A few available simulators are NIST ATM/HFC
Network Simulator [39], cnet [40], Internet Simulated ATM Networking Environment
(INSANE) [41], REALS.0 Network Simulator [42, 43], NS-2 [44], Objective Modular
Network Test Bed in C++ (OMNET++) [45], Optimised Network Engineering Tool
(OPNET) [46], Parallel Simulation Environment for Complex System (PARSEC) [47],
and UMJaNetSim [48].

A simulation tools is needed for this study. In principle, to simplify the process, a
simulator is chosen and used as the simulation tool from the existing simulators.
Modification and extension of the functionality of the simulator would be done so that a

simulation environment could be provided to achieve the objectives of the study.

There are many factors to be considered in order to select a suitable simulation tools for
the study. Some simulators have advantages in simulation techniques, programming
approach, provision of graphical user interface (GUI) or platform independence.
Meanwhile, some simulators are purposely designed for certain area of network

research.

UMJaNetSim network simulator is chosen to be the simulation tool in this study based
on the requirement of the study and the strength of UMJaNetSim. The main reason to
use UMJaNetSim is because UMJaNetSim is a Java-based object-oriented network
simulator. Hence, it is much easier and flexible to add in and modify the functionalities
in the simulator. Besides, it provides good GUI simulation environment on IP
networking. Moreover, the current version of UMJaNetSim (version 5) does not
support [P Multicast. Adding a Multicast module in the UMJaNetSim could be a

contribution to provide an IP Multi enabled envi

38

2.3 Analysis on UMJaNetSim
UMJaNetSim [48] network simulator is a flexible test bed for studying and evaluating
the performance of ATM and MPLS network without building a real network. This

simulator could provide simulation for IP-over-ATM.

UMIJaNetSim is a network simulator, which is developed based on NIST ATM/HFC
Network Simulator [39]. One of the major differences between UMJaNetSim and NIST
ATM/HFC Network Simulator is the former uses a pure Java solution and the latter is
developed in C. UMJaNetSim is developed in Java programming language for the
entire simulation engine, the GUI, and the component development API. Therefore,
UMJaNetSim is a fully object-oriented simulator. Hence, UMJaNetSim has high
portability among various platforms. It also provides a set of extensible Application
Programming Interfaces (APIs) in order to simplify the process of creating new
simulation environment. [49] Furthermore, the simulator is readily web-enabled by
using an applet version of the simulator. Users can also easily modify and add new

components to the simulator without affecting the structure of the simulator.

UMIJaNetSim allows user to simulate different network topologies, adjust parameters of
each component used in simulation operation, measure network activity, save and load

different simulation configuration and log data during simulation execution.

UMJaNetSim provides better GUI that could facilitate simulation process. The other
advantage of this simulator-is the output performance can be viewed in text based and

graphical representation on the screen while the simulation is running.

2.3.1 UMJaNetSim Architecture
UMJaNetSim is developed in JAVA. It is an object-oriented approach network
simulator. Basically, all the elements inside the simulator are constructed into a module.

UMIJaNetSim consists of two parts, the simulation engine and the simulation topology.

39

The simulation engine is the main controller of the entire simulation. It is responsible

for event task, GUI task, input and output process handling

for simulator and providing assisting tools. [49]

Simulation Engine

Event GUI IO & Assisting
M: Tools

I []

Simulation Topology

M

Simulation Simulation Simulation
Component Component Component

Figure 2.19 Architecture of UMJaNetSim

Tndi

g switch or

The simulation topology consists of simulation p such as i
router, physical links, source application and so on. These components are the main
subject of the simulation scenario. [49] Simulation process requires the interaction of
simulation engine and s'imulation topology. Figure 2.19 shows the overview

architecture of the UMJaNetSim.

2.3.1.1 Event Management Architecture

Event Management handles all the occurrence of event during the simulation process.
In the event management architecture, JavaSim object is the main object responsible for
the simulation process. It is the simulation engine that manages event scheduler, event
queue (SimEvent), and simulation clock (SimCIacjk). Event scheduler resides in JavaSim

object. [49] Figure 2.20 shows the Event Management Architecture for UMJaNetSim.

40

During the simulation process, the simulation engine interacts with the simulation

1

topology. A si ion comp may schedule an event to happen at a specific time

for a target component. SimEvent object handles the event by queuing it in a list sorted
by the event-firing time. The event in the front of the queue is processed first. When
the specific time is reached, the simulation engine invokes the event handler of the
target component. Then, the target component will react to the event according to its
behaviour. [49] UMJaNetSim allows any event to occur at any time, because it uses an

asynchronous approach of the discrete event model.

SimClock object manages the simulation time for the simulator. It is the global time
reference used by every component in the simulation and is managed by the simulation

engine. [49]

Manage Simulation Engine Manage
(JavaSim)

f

v
Simulation
Component

Enquetie| (SimComponent) We
Event Queue A/) Event

(SimEvent) Scheduler

T

o

Simulation voke
Component
(SimComponent)

i

v
Simulation Clock
(SimClock)

Figure 2.20 Event Management Architecture for UMJaNetSim

41

2.3.1.2 GUI Management Architecture

GUI Management has several functions. The main functions are user inputs handling,
drawing and network topology displays for simulation purpose, and various on-screen
windows managing. Once again, the JavaSim object is the main controller in the GUI

Management architecture for UMJaNetSim. SimPanel object is used to keep track of the

latest set of simulation and the i ion among the components so

P

that simulation topology for a particular simulation could be displayed visually to the
user. Users can modify the simulation topology on the GUI at any time during the

simulation process. [49]

Simulation
Engine
(JavaSim)
‘User—)—’ GUI Helper
(SimPanel)
I
v

Simulation |[¢— | P. Meter |

Topology Dialogs Dialogs

View 1 1 i
Custom Custom]

Dialogs Dialogs

Visible

Figure 2.21 GUI Management Architecture for UMJaNetSim

As shown in Figure 2.21, Parameter Dialogs and Meter Dialogs are also located under

the GUI Management Architecture. These two dialogs are used to manipulate the

external p for a p in the simul and hil

lly displays output

from the simulation process for a p Each simulati p is d

with a Parameter Dialog. But a Meter Dialog is only assigned to certain components,

1 In addition, each P

depending on the need of the component in the si

42

Dialog or Meter Dialog can create and maintain one or more Custom Dialogs. These
Custom Dialogs may be used to show additional information about the simulation [49],

such as OSPF routing table, IGMP Membership Table and PIM-DM Table.

2.3.1.3 Simulation Components
Simulation components are the primary objects in UMJaNetSim. The simulation

components are derived from SimComp object. SimComp object is a well-

defined base object with all the necessary interfaces that enable the interaction between
the simulation engine and the simulation component. Each simulation component has a
list of external parameters, which allows user-defined properties of a simulation
component. SimParameter object is used to achieve this purpose. SimParameter object

is an object that has a well-defined interface with the simulation engine. [49]

An event handler is included in every simulation component. It is a well-defined
method in SimComponent that accepts event from SimEvent object. All interactions
between simulation components are achieved through the sending of messages in the

form of a SimEvent through an event handler. [49] (Refer Figure 2.20)

2.3.2 UMJaNetSim API

In this section, the Application Programming Interface (API) of UMJaNetSim is
discussed. API is defined to provide a consistent way of creating simulation
components so that it could facilitate design issues in a simulation. [49] The API
focuses on defining well-known interfaces for simulation objects such as JavaSim,
SimEvent, SimClock, SimComponent and SimParameter. Only important features of

the API are presented.

2.3.2.1 JavaSim
JavaSim object manages event queue, event scheduler and a simulation clock in the
event It also provides GUI functions in the GUI management. [49]

Important methods of the JavaSim object are listed in Table 2.2.

43

Table2.2 Method in JavaSim

Method Function
java.util.List getSimComponents() Return a list of all existing
SimComponent
long now() Return current simulation

time (in tick).
boolean isCompNameDuplicate(String name) Ensures no duplicated name

for SimComponent

void notifyPropertiesChange(SimComponent Executes whenever there are

comp) structural changes to the
parameters

void enqueue(SimEvent e) Enqueues an event that has
been invoked.

void dequeue(SimEvent e) Dequeues an event when a

specific time is reached for
that event to be d

2.3.2.2 SimEvent

Simulation process involves interaction of simulation components. Each simulation
components communicate with each other by passing a message through an event,
which is managed by SimEvent object. Every invoked event contains an event ID to
differentiate the type of occurred event, the event invoked source, the destination of the
triggered event, the event occurrence time, and the set of parameters relevant to an
event. [49] The set of parameters passed in an event could help a simulation component

to take action on the event. R

An event can be either private or public, depending on the type of communication. A
private event is an event that passes among components of the same type whereas a
public event is an event that passes among components of different type. [49] Some of

the important methods of the SimEvent object are shown in Table 2.3.

44

Table 2.3 Methods in SimEvent

Method Function

SimEvent(int aType, SimComponent src, Constructor

SimComponent dest, long aTick, Object []

params)

SimComponent getSource() Retrieves the source
SimComp

SimComponent getDest() Retrieves the destination
SimComponent

int getType() Retrieves the event type

long getTick() Retrieves the event-firing
time

Object [] getParams() Retrieves the event
parameters

2.3.2.3 SimClock
A simulator needs a global time reference. In UMJaNetSim, SimClock object provides

the global time reference for every simulation comp in the simul Each

occurrence of an event is based on the time in SimClock object. In addition, SimClock

d

object also defines time conversion method to translate simulation time in mi ,

millisecond or second to tick. A tick is the fundamental unit of time used in the

UMIJaNetSim. A tick is equal to 10 nanoseconds. [49]

2.3.2.4 SimComponent R
In UMJanetSim, there are a number of simulation components. Some of these essential
(BTE), link,

and various type of application. In UMJaNetSim, SimComponent object is an important

ah

d terminal

simulation components are switch, router, b quip
object that defines those simulation components. Every simulation component in the
simulation must inherit SimComponent object. [49] SimComponent provides the

fundamental structure for a simulation p Each si i p

a list of simulation parameters. Listed in Table 2.4 and Table 2.5 are a few important

properties and methods for SimComponent.

45

Table 2.4 Properties in SimComponent

Property

Description

protected transient JavaSim theSim

A reference to the main
JavaSim object

protected java.util. List neighbors

A list of all (directly
connected) neighbors of the
SimComp

protected java.util. List params

A list of all external
parameters of the
SimComponent

Table 2.5 Methods in SimComponent

Method

Function

SimComponent(String aName,int
aClass,int aType,
JavaSim aSim,Point loc);

Constructor

Every new component must provide a
constructor with exactly the above
parameters

Object [] complInfo(int
infoid,SimComponent source, Object []
paramlist)

Provides a way for inter-component
information exchange without sending
run time events

boolean isConnectable(SimComponent
comp)

Called by the simulation engine when a
new component is about to be
connected to this component. This
method verifies whether the new
component can be connected to this
component

void addNeighbor(SimComponent
comp)

Called by the simulation engine when a
new component is connected to this
component

void removeNeighbor(SimComponent
comp)

Called by the simulation engine when a
new component is disconnected to this

void copy(SimComponent comp)

Used to copy parameter values from
another SimComponent of the same type

void reset()

Performs a reset operation in order to
bring the status of the component back
to the same status as if it is just newly
created

46

void start() Performs any operations needed when
the simulation starts
void resume() Performs any operations needed when

the simulation need to be resume. One
possible use is to capture any special
changes /that have been done by the
user during the pause period

void action(SimEvent e) An event handler of this component,
and will be called by the simulator
engine whenever a SimEvent with this
component as the destination fires

2.3.2.5 SimParameter

There are internal parameters and external p in every SimComp An

internal parameter is accessible only by the simulator while an external parameter is

accessible by the user. [49] These p are used to g asi

Table 2.6 Important Overrides in Simparameter
Method Function

SimParameter(String aName,String compName, | Constructor
long creationTick,boolean isLoggable)

String getString() Returns a String
representation of the
parameter value for logging

: | purpose
void globalSetValue(String value) Supports setting of the same
- parameter values for multiple
components in one d
int getValue() Reads a value
void setValue(int val) Writes a value
JComponent getJComponent() Returns a Java swing

component and its name

External parameters are inherited from SimParameter object. [48] Since SimParameter
object provides parameter logging and meter display, every external parameter also has
these features. Every inherited external parameter must have the name of the parameter,

the name of the component that owns the parameter, the time when the parameter is

47

created and the information on whether the parameter can be logged in the log file.
Besides the fundamental value, other values can be added according to the requirement
of each external parameter. The important overrides for SimParameter are listed in

Table 2.6.

2.4 Summary

This chapter provides a detailed description of [P Multicast, computer simulations, and
the UMJaNetSim network simulator. [P Multicast basic operation, multicast address,
IGMP, multicast forwarding algorithms, and various types of multicast routing
protocols are included in the first section of review. A brief description on the computer

ion and prc ing approach used in p i ion is di d in the

review on computer simulations. Reasons of choosing UMJaNetSim as the network
simulator for this thesis are also listed. Finally, the architecture and API of the

UM JaNetSim are concentrated in the analysis of the simulator itself.

The following chapter analyses IGMP and the PIM-DM.

48

