Chapter 5 Implementation

The previous chapter discusses design issues for IGMP, PIM-DM, and the simulation
applications. In this chapter, the discussions focus on the implementation of those
designs. These include the important attributes and methods employed.

The first section c on the impl ion of IGMP. Thereafter the

implementation of PIM-DM is presented. This is followed by the implementation of
multicast simulation applications and the implementation of simulation topology.
Finally a discussion on the exclusions and simplification of implementation is presented

prior to the chapter summary.

5.1 Implementation of IGMP
The section below lists the implementation of each class involved in IGMP. The

descriptions include the attributes and the methods implemented in a particular class.

5.1.1 IGMPvy2 Class

This section lists all the important attributes and methods implemented. This includes
the Group class and the /GMPTimer class. The details of the state diagram for the
implementation of IGMP are listed in Appendix A while the constants used in the

IGMPv2 class are included in Appendix B.

class IGMPv2 implements Serializable {

111111111111111111111117

//Important attributes//

111111111111111111111117

public SimParamGroupTable the_groupTable; //An object for displaying
// group membership entries

private java.util.List the_gtable; //A list of group membership
//entries
private java.util.List the_timerList; ~ //A list of IGMP timers

private int status; //A status for implementation of IGMP
//HOST/QURIER/NONQUERIER

86

11111111111111111111111
// Constructor /
11111711171111111111117

IGMPv2 (int aStatus, SimComponent aComp, JavaSim aSim);

[1111111111111111111111
// Important Methods //
11111711111111111111117

//Initilization

public void igmpRouterInit (Object an_outPort){}//for router
//initialization

private void setStatus(int a_State) //set routes’ status

//Main interface (refer to 4.2.1)

public void igmpInput (Object [] paramlist)({} //IGMP Input
public void igmpOutput (Cell cell, Object an_outPort){}//IGMP Output
public void groupJoin(int a_group){}//handle joining event

public void groupLeave (int a_group) {}//handle leaving event

//IGMP timer handling (refer to 3.1.4)

public void unsolicitedReportTimeout (SimEvent e){}

public void queryTimeout (SimEvent e)({}

public void queryReponseTimeout (SimEvent e){}

public void groupMembershipTimeout (SimEvent e) {}

public void otherQuerierPresentTimeout (SimEvent e)({}

public void startupQueryTimeout (SimEvent e){}

public void lastMemberQueryTimeout (SimEvent e){}

private void resetTimer (int a_group,Object an_outgoingIf, int
an_eventType,double a_tempo, int toEventType){}//reset timer

private void stopTimer(int a_group, int an_eventType){}//stop timer

private void clearTimer (int a_group, int an_eventType){}//clear timer

//IGMP notification (refer to 3.1.4)

//trigger IGMP Notification Add

private void notifyRoutingAdd(int a_group, Object an_outgoingIf)({}
//trigger IGMP Notification Remove

private void notifyRoutingRemove (int a_group, Object an_outgoingIf){}

//IGMP Message handling (refer to 3.1.4)
private void sendReport (int a_group){} //to send Report
private void sendQuery(int a_group, Object an_outPort)({} //to send
- //Query
private void sendLeave(int a_group){} //send Leave
private void receiveQuery(Cell acell, Object an_inPort){}//to receive
//Query
private void receiveReport (Cell acell, Object an_inport){}//to
//receive Report
private void receiveLeave(Cell acell, Object an_inPort)(}//to receive
//Leave

//Group membership entry handling
private void addEntry(int a_group, Object an_outgoingIf)({} //to add
//new entry
private void increaseCount (int a_group) {}//to increase reference
© //count
private void decreaseCount (int a_group) {}//to decrease reference
/count

87

private void setGroupState(int a_group,int a_state){}//to set entry
//state

private void setFlag(int a_group) {}//to set Flag
private void clearFlag(int a_group){}//to clear or reset Flag

I1111111111117111111117
// Group Class //
[1117111171111111111111
private class Group implements Serializable {

int state; //FREE, DELAYING or IDLE (host only)

int groupAddress; //An address define the multicast group

Object outLink=null; //An interface for receiving and sending
//multicast packet

int referenceCount; //The number of process still interested

// in the group (host only)
boolean lastReportFlag; //The last node send IGMP report flag
// (host only)

}

1111111111111111111111
// IGMPTimer Class //
1111111117111111111117
private class IGMPTimer implements Serializable{

int groupAddress; //An address that define the
//multicast group; 0 for router

int eventType; //Define the timer event type

long timeOut; //Specify the timeout time

Object outPort=null; //An outgoing interface

SimEvent olde=null; //An old timer event

IGMPTimer (int agroup, Object an_outPort){} //Constructor

private void start (int an_eventType, double a_tempo,
SimComponent self)({}//to start a timer

private void stop(){}//to stop a timer

private void clear()({}//to clear a timer

5.1.2 SimParamGroupTable Class
This class is used to display the IGMP group membership entries.

class SimParamGroupTable extends SimParameter implements
ActionListener, Serializable(

111171111111111111111111

//Important attributes//

II1111117111111111111117

private transient JComponent jcomp=null; //It is used for GUI

private IGMPv2 the_igmp; //Called IGMPv2 object

private SimComponent the_comp;//Called IPBTE or ATMLSR depend on
//implementation

88

II117111111111111111111
// Conmstructor //

I1111711111111111111117
SimParamGroupTable (String aName,String compName,long creationTick,

SimComponent a_Comp, JavaSim a_Sim, IGMPv2 a_igmp)

[11111111111111111111117
// Important Methods //

1I1111111111111111111111
//Action performed when button in GUI is pressed
public void actionPerformed (ActionEvent e)({}

//Format of table displayed

private class MyTableModel extends
Javax.swing.table.AbstractTableModel {}

}

5.1.3 Modification in I/PBTE Class
Stated below are the new attributes and methods added in the /PBTE class for the

implementation of IGMP. Only implementations involved IGMP are listed.

class IPBTE extends SimComponent implements Serializable {

I111111111111111111111171

//Important attributes//

111111111111111111111117

private IGMPv2 the_igmp=null; //Called IGMPv2 object

[1111117111111111111111

// Constructor //

[1111117111117111111117

IPBTE (String name,int c,int t,JavaSim asSim,java.awt.Point loc) {
Initiate an IGMPv2 Object for Host

s

111111111111111111111111
// Important Methods //
I1111111111111111111117
//IGMP Event Listener
void action(SimEvent e) {
SWITCH event type
CASE message receive
pass to message handling method in IPBTE
CASE IGMP message send out
pass to message handling method in IPBTE
CASE IGMP join or leave event
pass to IGMP event handling method in IPBTE
CASE timer
pass to appropriate timer event handling. method in IGMPv2
END

89

//New method added, IGMP event handling method
private void b_receive_igmp (SimEvent e){
IF join THEN
pass to groupJoin method in IGMPv2
End
IF leave event THEN
pass to groupLeave method in IGMPv2
END

}

// Modifications Done in Existing Methods
// Received message handling method
private void b_receive (SimEvent e) {

IF message is a sent out IGMP THEN

Pass to output port
END
IF message receive from LINK THEN
IF destination is class D address THEN
IF destination address is ALL_SYSTEMS_MULTICAST_GROUP (224.0.0.1) THEN
pass to igmpInput method

END
IF destination address larger than 224.0.0.255 THEN

IF is is IGMP packet THEN

pass to igmplnput method

ELSE
pass to relevant multicast applications

END

END
END
END

5.1.4 Modification in ATMLSR Class
Stated below are the new attributes and methods added in the ATMLSR class for the

implementation of IGMP. Only implementations involved IGMP are listed.

class ATMLSR extends SimComponent implements Serializable {

111111111111111111111117
//Important attributes//
111111111111111111111177
private IGMPv2 the_igmp=null; //Called IGMPv2 object
I1111711711111111111111

// Constructor //

II111117111111111111117
ATMLSR (String name,int c,int t,JavaSim aSim,java.awt.Point loc) {

Initiate an IGMPv2 Object for Router
)

90

IIL111111711171111111117
// Important Methods //
111111111111111111111117
//IGMP Event Listener
void action(SimEvent e) {
SWITCH event type
CASE IGMP message receive
pass to message handling method in ATMLSR
CASE IGMP message send out
pass to sent out IGMP messages handling method in ATMLSR
CASE timer
pass to appropriate timer event handling method in IGMPv2
END
}

//New method added
//Initialization of IGMP
private void sw_igmp_init () {

FOR every interface do igmpRouterinit method
}

//Handling of received IGMP messages

private void sw_receive_ip_igmp(Cell aCell, Port avoport) {
pass to igmpInput method

)

//Handling of sent out IGMP messages

private void sw_send_igmp (SimEvent e)
pass to appropriate output port for sending out

}

// Modifications done in existing message handling methods
private void sw_my_receive (SimEvent e)
IF it is a IGMP packet THEN
pass to received IGMP messages handling method in ATMLSR

END

5.2 Implementation of PIM-DM
In this section, the implementations of each class involved PIM-DM are listed. The

descriptions include the attributes and methods implemented in a particular class.

5.2.1 PIMDM Class
This section lists all the important attributes and hods impl d. It includes the
SG class, the SGOF class, the PIMNeighbor class and the PIMDMTimer class. Detail of

91

system flow for the implementation of PIM-DM is listed in section 5.4 while the
constants used in the PIMDM class are included in Appendix B.
class PIMDM implements Serializable {

[11111111111111111111117
//Important attributes//
I11111111111111111111117
public SimParamPIMDMTable the_pimSGTable; //An object for displaying
//(s, G) entries
public SimParamPIMDMNeighborTable the_pimNTable; //An object for
//displaying information of PIM-DM neighbor

private java.util.List the_sgTable; //A list of (S, G) entries
private java.util.List the_membershipTable; //A list of membership
//entries

private java.util.List the_neighborTable; //A list of information of
//PIM-DM neighbor routers

private java.util.List the_timerList; //A list of PIM-DM timers

private int genID; //A generation ID for router

11111111111111111111111
// Constructor /!
11111111111111111111111
PIMDM (SimComponent aComp, JavaSim aSim) {}

1111111111111111111111

// Important Methods //

11111111111111111111111

//Initilization

public void pimdmInit (Object a_port){}//initialization for router

//Main interface (refer to 4.3.1)
public void pimdmInput (Object (] paramlist){}//PIM-DM Input
public void pimdmOutput (Cell cell, Object an_outPport) {}//PIM-DM
//Output
public java.util.List getForwardList(int a_source, int a_group,
Object an_inPort){}//get forwarding list
public void notRPF(int a_source, int a_group, Object an_incomingIf,
Object an_rpfIncomingif){}//handle not RPF packtet

//Interface handling (refer to 4.3.1)
private void pimdmForward(int a_source, int a_group, Object
an_outgoingIf) {}//forward handling
private void pimdmPrune (boolean isRPF, int a_source, int a_group,
Object an_outgoingIf){}//prune handling

//Neighbor handling (refer to 3.2.4)
private void procGenerationID(Cell a_cell, Object

an_inPort) {}//process received GenID
private void receiveNewGenID(int a_neighborIP, Object

an_inPort) {}//handle received new GenID

//PIM-DM event handling (refer to3.2.4)
public void receiveNotificationAdd(SimEvent e){} //receive IGMP
//Notification Add

public void receiveNotificationRemove (SimEvent e){}//receive IGMP

92

//Notification Remove
private void receiveNewMembership(int a_group, Object
an_outgoingIf) {}//new member handling
private void receiveLeaveMembership(int a_group, Object
an_outgoingIf) {}//member leave handling

//PIM-DM Message handling (refer to 3.2.4)
private void sendHello(Object an_outPort)({}//to send Hello message
private void sendPrune(int a_source, int a_group, int
an_upstreamRouter, Object an_outPort){}//to send Prune message
private void sendGraft (int a_source, int a_group, Object
an_outPort) {}//to send Graft message
private void sendGraftAck(Cell a_cell, Object an_outgoingIf)({}//to
//send Graft-Ack message
private void receiveHello(Cell a_cell, Object an_inPort){}//to
//receive Hello message
private void receivePrune(Cell a_cell, Object an_inPort){}//to
//receive Prune message
private void receiveGraft (Cell a_cell, Object an_inPort){}//to
//receive Graft message
private void receiveGraftAck(Cell a_cell, Object an_inPort){}//to
//receive Graft-Ack message

//SG entry handling

private void addSGEntry(int a_source, int a_group, Object
an_incomingIf){}//add new SG entry

private void removeSGEntry (int a_source, int a_group, Object
an_incomingIf) {}//remove SG entry

//PIM-DM neighbor entry handling

private void addNeighborEntry(int a_state, int a_source, Object

an_incomingIf, int a_genId){}//add new Neighbor entry
private void removeNeighborEntry (Object an_incomingIf){}//remove
//neighbor entry

//PIM-DM membership handling
private void addMembership(int a_group, Object an_outgoingIf)({}//add
//new Membership entry
private void removeMembership(int a_group, Object
an_outgoingIf) {}//remove Membership entry

//PIM-DM timer event handling (refer to 3.2.4)
public void helloTineout (SimEvent e){}
public void neighborTimeout (SimEvent e){}
public void pruneTimeout (SimEvent e){}
public void dataTimeout (SimEvent e){}
public void graftAckTimeout (SimEvent e)({}
public void assertTimeout (SimEvent e) {}
public void unicastTableChange (SimEvent e)({}
private void resetTimer (int a_state, int a_source, int a_group,

int an_eventType, double a_tempo){}//to reset timer
private void stopTimer (int aGroup, int anEventType)({}//to stop timer
private void clearAllTimer(){}//to clear all timer in the timer list
private void clearTimer(int a_state, int a_source, int a_group,

int an_eventType,Object an_outgoingIf)({}//to clear timer

93

11111111111111111111111
// SG Class //
11111111111111111111117
private class SG implements Serializable {

int state; //FORWARD, NEGATIVE_CACHE

int source; //Address for sending source

int groupAddress; //Address define the multicast group
Object incomingIf=null; //An incoming interface

java.util.List outgoingList; //A list of outgoing interfaces
sG(){}

11111111111111111111111

1/ SGOF Class //

11111111111111111111117

private class SGOF implements Serializable {
Object outgoingIf=null; //An outgoing interface

)

11111111111111111111111
// PIMNeighbor Class //

111117101171111111111117
private class PIMNeighbor implements Serializable {

int ipAddress; //An IP address of PIM-DM neighbor router
int genId; //A generation ID
Object incomingIf=null; //An incoming interface

}

II111711111111111111111

// Membership Class //

11111111171111111111111

private class Membership implements Serializable(
int groupAddress; //A group address
Object outgoingIf; //An outgoing interface

}

11111111111111111111177
// PIMDMTimer Class //
[1111171111111111111111 5
private class PIMDMTimer implements Serializable(
int state;//indicate the state of the timer: router(hello, assert)
// <S,G» entry(data timeout and graft ack, neighbor>
// prune(individual prune if)
//free if not used
int groupAddress;//address define the multicast group;0 for router

int source; //A source address
Object outgoingIf; //An interface
int eventType; //Timer event type
long timeOut; //Timeout time
SimEvent olde=null; //An old event

PIMDMTimer (int a_state, int a_source, int a_group, Object
an_outgoingIf) {}//constructor
private void start(int aneventtype, double atempo, SimComponent
self){}//to start’ timer
private void stop(){}//to stop timer
private void done(){}//a good practice to idle the expired timer

94

private void clear(){}//to clear timer

5.2.2 SimParam PIMDMTable Class
This class is used to display (S, G) entries.

class SimParamPIMDMTable extends SimParameter implements
ActionListener, Serializable {

II1111117111111111111117

//Important attributes//

111111111111111111111111

private transient JComponent jcomp=null; //It is used for GUI
private PIMDM the_pimdm; //Called PIMDM object
private SimComponent the_comp; //Called ATMLSR

II111111711111111111111
// Comstructor /

11111111171111711111117
SimParamPIMDMTable (String aName,String compName,long creationTick,
SimComponent a_Comp, JavaSim a_Sim, PIMDM a_pimdm) {}

I11111111111111111111117
// Important Methods //

II1111111111111111111117
//Action performed when button in GUI is pressed
public void actionPerformed(ActionEvent e){}

//Format of table displayed

private class MyTableModel extends
javax.swing.table.AbstractTableModel{}

5.2.3 SimParam PIMDMNeighbor Class
This class is used to display the information of PIM-DM neighbor routers. Basically,
the functions of methods used in this class are almost similar, except the display format

for the GUI part.

class SimParamPIMDMNeighborTable extends SimParameter implements
ActionListener, Serializable {

I11111111111111111111117

//Important attributes//

HITIIE1r111117

private transient JComponent jcomp=null;//It is used for GUI
private PIMDM the_pimdm; //Called PIMDM object

95

private SimComponent the_comp; //Called ATMLSR

111111111111111111111171
// Constructor //

111111111111111111111171
SimParamPIMDMNeighborTable (String aName,String compName,long
creationTick, SimComponent a_Comp, JavaSim a_Sim, PIMDM a_pimdm){}

[11111111111111111111111

// Important Methods //
111111111111111111111117

//Action performed when button in GUI is pressed
public void actionPerformed (ActionEvent e) {}

//Format of table displayed
private class MyTableModel extends
javax.swing.table.AbstractTableModel{}

5.2.4 Modification in ATMLSR Class
Stated below are the new attributes and methods added in the ATMLSR class for the
implementations of PIM-DM. Only implementations that involved in PIM-DM are

listed.

class ATMLSR extends SimComponent implements Serializable {

[11111111111111111111111
//Important attributes//
II1111111111111111111117

private PIMDM the_pimdm=null; //Called PIMDM object

[1111111111111111111111
// Constructor // s
1111110111111111111117

ATMLSR (String name,inf c,int t,JavaSim aSim,java.awt.Point loc) {
Initiate an IGMPv2 Object for Router
}

111111111111111111111111
// Important Methods //
111111111111111111111117
//PIM-DM Event Listener
void action(SimEvent e) {
SWITCH event type
CASE message receive
pass to message handling method in ATMLSR
CASE PIM-DM message send out
pass to sent out PIM-DM messages handlmg method in ATMLSR
CASE timer

96

pass to appropriate timer event handling method in PIMDM
CASE IGMP notification
pass to appropriate notification handling method in PIMDM
CASE unicast table change
pass to unicast table change handling method
END
}

//New method added
//initialization of PIM-DM
private void sw_pimdm_init () {
FOR every interface
do pimdmInit method

}

//PIM-DM message handling method

private void sw_receive_pimdm(Cell a_cell, Port a_voport) {
pass to pimdmInput method

}

//PIM-DM message sent out handling method

private void sw_send_pimdm(SimEvent e) {
pass to queue for sending out

)

//Multicast message handling method
private void sw_receive_ip_multicast (Cell a_cell, Port an_inPort) {
IF multicast packet received from RPF interface THEN
pass to getForwardList method to get forwarding interface list in PIMDM
IF forward list is not null THEN
pass to queue to forward out multicast packet according to the forwarding list
END
ELSE
pass to notRPF method in PIMDM
END
)

// Modifications Done in Existing Methods
private void sw_my_receive(SimEvent e) {
IF it is a IP data packet THEN
IF destination address is a class D address THEN
pass to sw_receive_ip_multicast method
ELSE
pass to sw_receive_ip_datagram method //existing
END
END
IF it is a PIM-DM packet THEN
pass to sw_receive_pimdm method
END

97

5.3 Implementation of Simulation Application
5.3.1 MulticastdataApp Class

This class is used to send multicast data. Four values have to be specified before a
simulation of multicast packet sending starts. These values are multicast group address,

start sending time, the data rate (in ps), and stop sending time.

When simulation starts, the object of this class checks the start and stop sending time
and enqueue the multicast packet start sending and stop sending events. Once the
sending event is called, this application class sends out IP multicast packet of a group at
the predefined data rate. Stated below are some important attributes and methods

implemented in this class.

class MulticastdataApp extends SimComponent implements Serializable {

I11111111111111111111117

//Important attributes//

I111111111111111111111171

private SimParamIP the_destGroupIP=null;//A multicast group address

private SimParamInt the_sendTime=null;//A time start sending
//multicast packets

private SimParamInt the_period=null; //A sending rate in microsecond

private SimParamInt the_stopTime=null;//A time stop sending
//multicast packets

[1111111111111111111117

// Constructor //

11117111111111111111117

MulticastdataApp(String name,int c,int t,JavaSim asim,
java.awt.Point loc){}

111111111111111111111417

// Important Methods //

IIL1I10HI011101111111117

private void cn_ev_send_multicast (int a_time){} //Enqueue send event
private void cn_ev_stop_multicast (int a_time){} //Enqueue stop event
private void cn_send_multicast () {} //send multicast packets

Data rate is the sending rate for the simulation of multi pplication. An input of data

rate in unit of microsecond is needed before the simulation starts. The

MulticastdataApp object uses this input to calculate the sending rate and applies it when

simulation starts. Calculation of sending rate is performed as below.

98

Let period = input data rate in microsecond

For every period send a cell

A cell consist of 53 bytes, which is equal to 53 X 8 = 424 bits/second
Hence to send x bits/second, period = 1/(x/424) second

5.3.2 IPMulticast Class

This class is used to simulate the behavior of a member of a multicast group. It can
perform the function of joining a group, receiving multicast packets and leaving a
group. Three values must be specified before the simulation starts. They are multicast

group address, joining time and duration of joining a multicast group.

When simulation begins, the object of this class enqueues 2 events. The first event is a
group joining event, enqueued to occur at joining time. The second event is the group
leaving event, enqueued to occur at leaving time. The leaving is the total of joining

time and duration of joining.

When a group joining event is triggered, the object will trigger another event to the
IPBTE object to start joining a multicast group. On the other hand, when a group
leaving event is triggered, a leave event will be sent to the /PBTE object to leave that

particular multicast group address.

Once joining a multicast group, this object is able to receive multicast packet from the
multicast group. Stated below are important attributes and methods implemented in this

class.

Class IPMulticastApp extends SimComponent implements Serializable {

[11111171111111111111117

//Important attributes//

I11111117111111111111117

private SimParamIP the_groupIP=null;//An address of a multicast group
private SimParamInt the_joinTime=null;//A time start join

private SimParamInt the_duration=null;//A duration of joining a group

[1111111111111111111117
// Constructor /1
HII11111101171111111117

99

IPMulticastApp (String name,int c,int t,JavaSim aSim,
java.awt.Point loc) {}

111111171111111111111117

// Important Methods //

111111111111111111111117

private void cn_join_leave_group(int a_group, int a_join_time, int
a_duration) {} //Enqueue join event

private void cn_receive(SimEvent e)({} //Receive multicast packets

To simulate a real group joining and leaving event for multicast, a random joining time
is implemented. In fact, the input value for joining time is the mean value. The input
value acts like a seed for generating a random joining time. For example if the value is
144s, and there are 3 /PMulticastApp objects running in the simulation, the join time for

these applications may be 105s, 135s and 155s respectively.

Similarly, the input joining duration is also used as the mean value to randomly
generate a new duration of joining process. Then, the leaving time for the multicast
application is equal to the randomly generated joining duration plus the randomly
generated joining time. For example, if the above example uses 360s as an input
joining duration, the joining duration for those applications may be 341s, 361s, and
369s respectively. Hence, the leaving time for the multicast applications in the

simulation are 446s, 496s and 524s respectively.

The name assigned to the /PMulticastApp object is also used as the random seed,
similar name of application and input value will have similar randomly generated

joining and leaving time.

5.4 System Flow for Implementation

The state diag for the impl ion of the /GMPv2 class is shown in the

Appendix A while the system flow di for the impl ion of the PIMDM class

is shown in Figure 5.1. The implementations are referred to these two diagrams.

100

ﬁ@

Answer is No
unless specified
with Y (yes)

Get forward list

Create new entry

Forward
multicast
packet

Prune the not
RPF interface

Prune interface
and start timer

Send graft
toward source
and tum
forwarding

Tum the interface
into forward

M Resend Graft

Update
membership table

Figure 5.1 System Flow for Implementation of PIMDM class

101

5.5 Simulation Topology

In a real multi-access medium network, some of the interconnected routers may be
connecting to hosts and routers to form a subnet. Every host may be hosting one or
multiple multicast applications that would be receiving or sending multicast data. It is

shown in Figure 5.2.

Every host has an IGMP module, which will handle the joining and leaving of multicast
group required by each multicast application. When an application desires to join or
leave a multicast group, IGMP in that host will be acknowledged. Then, the IGMP
modules in the host will communicate with the IGMP module in the router within the
same subnet. This will subsequently notify the PIM-DM module in the routers to

construct a multicast tree among routers.

< router E
physical mwm mmn

router

M M: multicast
o

& %

router

[-"igure 3.2 A Multi-access Network

However, for this study, UMJaNetSim could only provide point-to-point link network

ions but not multi link network. Hence, modification on simulation

process and topology has been done so that a simulation on IP Multicast through PIM-

DM could be carried out as planned.

Classes created in the previous sections are used in the simulation. The components of

the simulation environment are shown in Table 5.1. Each of the components is

102

1 d as a SimCc

F 'p

Figure 5.3 shows the

of each si

component in a network simulation environment.

Table 5.1 Simulation Components

Class Simulated Network Component

ATMLSR Router

GenericLink Physical link

IPBTE Broadband-Terminal Equip
(B-TE)

MulticastdataApp Application (multicast packet
sender or Source)

IPMulticastApp Application (multicast group
receiver or member)

In this network simulation environment, the ATMLSR simulates a router while the

GenericLink simulates the behavior of physical link. The combination of the /PBTE, the

MulticastdataApp and the IPMulticastApp simulates the behavior of a subnet.

In fact, the router simulated in UMJaNetSim is an Asynchronous Transfer Mode (ATM)
Switch. Hence, IP over ATM is implemented. IP packets are sliced into ATM cells
before transported to their destinations. Since multicast routing protocol is a layer-3

protocol, implementation of IP over ATM in this project will not affect the results of

simulation.
:

; Subnet activities
LSR GeneracLink

ATM MulticastdataApp

LSR -{ GeneralLink

IPMulticastApp

ATM k GeneracLink r
LSR IPMulticastApp

Figure 5.3 Network Simulation Environments

103

Since UMJaNetSim is only designed to simulate point-to-point link network, an /PBTE
cannot be simply connected to multiple hosts in a simulation. The number of hosts is
not an important factor in this simulation. /PBTE represents a subnet with only one

interface to a router. Here, neither the MulticastdataApp nor the IPMulticastApp, which

is connected to an /PBTE, is representing a host in a subnet. In fact, the combination of

an [PBTE, a Multicastdatadpp and a IPMulticastApp provide a scenario of IP

multicasting activities and behaviors in a subnet. This means that the simulation of the
subnet is emphasized on the behavior of multicast application but not the behavior of

hosts.

All members of multicast applications in a subnet share a common /GMPv2 module in
an [PBTE. As mentioned before, in a real network, the IGMP module resides in every
host to handle multicast group joining and leaving for that host. Here, for the simulation
purposes, a common /GMPv2 module resides in the /PBTE. 1t is lised to handle all
multicast group joining and leaving for the subnet. The /GMPv2 in an IPBTE will
communicate with the /GMPv2 module in an ATMLSR to pass the joining and leaving

information to the PIMDM module for the construction of multicast path.

For a host, the IGMP is only used to join and leave a multicast group, so it is still valid
to use a common IGMP module in the simulation environment as long as the router

could receive join and leave membership correctly.

5.6 Exclusions and Simplifications in Implementation
For the implementations, simplifications and assumptions are made in order to limit the
simulation scope. Hence, a few features in both IGMP and PIM-DM are not

1 d in the si

For the implementation of IGMP, all routers in the network simulation environment are
assumed to be IGMP version 2 enabled, therefore Version 1 Router Present Timer is not

implemented.

Due to the reason that the simulation topology implements only point-to-point link

network, features that involves multi-access network in PIM-DM are also excluded

from the i ions. Assert is a method used to solve the problem of

multiple path to destination in multi-access network, so the sending, receiving and

processing of Assert message is not needed here, and excluded from impl ion of
PIM-DM. Meanwhile, selection of designated router (querier and non-querier) is also
not implemented. This is because the selection of designated router is only required in

multi-access network.

Existing UMJaNetSim implements OSPF as a unicast routing protocol. However,
dynamic OSPF routing is not implemented in the simulation. All simulation process
involves non-dynamic unicast routing. Hence, unicast table change handling is also not

implemented in this project.

On the other hand, there is a simplification in implementing the PIM-DM neighbor
routers handling. In fact, there is one field purposely reserved in PIM-DM Hello
message or IP address of PIM-DM neighbor router. However, to simplify the
implementation, a unique router identification number (hereafter it is referred to router
ID) is assigned to this field. Every router has a unique router ID. Since two routers are
connected in a point-to-point link and every router has a unique router ID, router ID
could act as and therefore replace the IP address of an interface of a router. Thus, router
ID is used in the IP address field in PIM-DM Helloxmessage. This simplification has no
impact to the implementatién of PIM-DM.

envi there is no need to

Since packet errors are not simulated in this si
1 heck for in IGMP and PIM-DM.

105

5.7 Summary

In this chapter, implementations of IGMP, PIM-DM, simulation application and
topology are discussed. The important attributes and methods used in each class are
presented. There are some exclusions and simplifications in the implementation of
IGMP and PIM-DM. Simulation involves IGMP version 2 routers only. Besides, the
simulation of PIM-DM is only implemented in a point-to-point network simulation
environment. Hence, Assert message is not included in the simulation. In addition, a
method of handling of a unicast table change in the PIMDM is also not implemented.
Moreover, there is a simplification in PIM-DM neighbor handling and all packets

involved in the simulation are assumed to be error free.

In the next chapter, the discussion is focused on the network simulation of IP Multicast

using PIM-DM. Testing and simulation results is p d along with analysis and

descriptions.

106

