CONTENTS

Contents	Pages
Acknowledgements	i
Abstract	ii
Contents	iii
Chapter 1	
1. Introduction	
1.1 Why Polymer?	1
1.2 Criteria for Polymer Electrolyte	3
1.3 Polymer Electrolytes and Their Conductivity Values	4
1.4 Conductivity Mechanism in Polymers	6
1.5 What is Chitosan?	14
1.6 General Characteristics of Chitosan	17
1.6.1 Film forming ability	17
1.6.2 Optical properties	17
1.6.3 Chelation of metal ions	18
1.6.4 Glass transition temperature	18
1.7 Lithium Cells	19
1.8 Some Characteristics of Lithium Cells	22
1.9 Objectives of The Present Investigation	24
Chapter 2	
2. Experimental Methods	
2.1 Samples Preparation	27
To determine which molecular weight group of chitosan will give a film with the highest electrical conductivity	27

CONTENTS

2.1.2 To determine the better plasticizer between ethylene carbonate (EC) and proylene carbonate (PC) in enhancing electrical conductivity of chitosan acetate film	28
2.1.3 To determine the salt content in a plasticized chitosan acetate film that gives the highest electrical conductivity	28
2.2 X-ray Diffraction (XRD)	29
2.3 Infrared Spectroscopy (IR)	30
2.4 X-ray Photoelectron Spectroscopy	31
2.5 Impedance Spectroscopy	36
2.6 Ionic Transference Number Measurement	44
2.7 Solid State Electrochemical Cell Fabrication	46
2.7.1 Charge/Discharge Characteristics	47
Chapter 3	
3. Electrochemical Impedance Analysis	
3.1 Complex Impedance Analysis	48
 Highest molecular weight chitosan film exhibits highest electrical conductivity 	48
3.1.2 Ethylene carbonate (EC) a better plasticizer than propylene carbonate (PC) in enhancing conductivity of chitosan acetate films	53
3.1.3 How plasticizer increases electrical conductivity and why EC the better plasticizer?	55
3.1.4 Effect of plasticizer on conductivity relaxation time	56
3.1.5 How plasticizer reduces conductivity relaxation time?	62
3.1.6 Effect of salt concentration on electrical conductivity of film	63
3.2 Complex Admittance Analysis	69
3.3 Ionic Conductivity Mechanism	74
3.4 Conductivity, Permittivity and Modulus Formalisms	86

CONTENTS

Chapter 4	
4. Material Characterization	
4.1 X-ray Diffraction Analysis	95
4.2 Fourier Transformed Infrared Spectroscopy Analysis	101
4.3 X-ray Photoelectron Spectroscopy Analysis	106
4.4 Transference Number Measurement	111
Chapter 5	
5. Electrochemical Cell Analysis	
5.1 The Li/AC+EC+LiCF ₃ SO ₃ /V ₂ O ₅ cell	113
5.2 The LiCoO ₂ /AC+EC+LiCF $_3$ SO $_3$ /V $_2$ O $_5$ cell	119
Chapter 6	
6. Summary and Conclusions	121

Reference

Papers Published and Presented by the

Author in Related Areas

ν

123

130