DETERMINATION OF ACRYLATES/ METHACRYLATES VIA DYNAMIC HEADSPACE OUTGASSING PROCEDURE

A Research Project Report Submitted to Chemistry Department, University of Malaya As Partial Fulfillment For The Course SCGS5189 Master of Science Degree In Analytical Chemistry and Instrumentation

> BY: PUA SIEW SIEW SGC020010

SUPERVISOR:

PROF. DR. G. H. TAN

ACKNOWLEDGEMENT

I would like to thank Western Digital (M) Sdn. Bhd, specifically Madam. Jean Nolan, manager of Analytical Services Laboratory, for allowing me to use the facilities and instrument for this project. It is her support that made this project successful. My gratitude also goes to Prof. Dr. G.H. Tan for his guidance. Last but not least, to Warren and Penny, thank you for your encouragement and love.

ABSTRACT

Dynamic headspace/ GCMS method was applied to study the compounds outgassed from hard disk drive spindle motors. A non-equilibrium dynamic headspace sampling technique was applied where samples were heated at 85 °C and their outgassed compounds were purged to an adsorbent by flow of nitrogen gas (99,99% purity) set at 65 ml/min for 3 hours.

Desorption of compounds was done by using a thermal desorption system and analyzed via GCMS. Semi quantitative analysis method was carried out with reference to 1000 ng deuterated hexadecane-d34. The major groups of compounds detected in the analysis were the acrylates/ methacrylates, alcohol and hydrocarbons.

A full quantitative method was established for 3 common compounds, i.e. 2hydroxyethyl methacrylate, tetrahydrofurfuryl acrylate and isobornyl methacrylate. Both semi quantitative and full quantitative methods were compared.

TABLE OF CONTENT

CONTENT	PAGE
Acknowledgement	ii
Abstract	iii
Table of Content	iv
List of Table	viii
List of Figure	ix
List of Abbreviation	xi
List of Appendices	xiii

Chapter I Introduction

1.1	Introd	uction to Hard Disk Drive (HDD)	2
1.2	Micro	Contamination & Chemical Analysis	4
	1.2.1	Ionic Contaminants	5
	1.2.2	Particulate Contaminants	5
	1.2.3	Organic Contaminants	6

Chapter II	Outga	asing of Adhesives & Dynamic Headspace Analysis	
2.1	Outga	ssing of Adhesives	10
2.2	Heads	pace Analysis	14
	2.2.1	Static Headspace vs. Dynamic Headspace	14
	2.2.2	Dynamic Headspace/ GCMS analysis	17
		2.2.2.1 Sampling	17
		2.2.2.2 Thermal Desorption System (TDS)	20
		2.2.2.3 Gas Chromatography-Mass Spectrometer	23
2.3	Objec	tive of Project	26

Chapter III	Experiment

3.1	Instrument Settings		
	3.1.1	Thermal Desorption System (TDS 2)	27
	3.1.2	Cold Injection System (CIS 4)	30
	3.1.3	GC-MS	32
3.2	Appara	atus	34
3.3	Standa	ords & Materials	35
3.4	Standa	ard Solution Preparation Procedure	
	3.4.1	Preparation of Semi Quantitative Standard	36
	3.4.2	Preparation of Quantitative Standard	36
	3.4.3	Preparation of Surrogate Spike Standard	36
	3.4.4	Preparation of Adsorbent	36

3.5	Test Procedure		
	3.5.1	Conditioning Adsorbent Tubes	38
	3.5.2	Container Cleanliness Check	38
	3.5.3	Sampling Procedure	38
3.6	Data A	Analysis Method	
	3.6.1	Semi-quantitative analysis	40
	3.6.2	Quantitative Analysis Method	41
		3.6.2.1 Calibration Plot	41

3.6.2.2 Check Standard 43

Chapter IV Results & Discussion

4.1	Semi (Quantitative Results	45
	4.1.1	Motor A	46
	4.1.2	Motor B	51
	4.1.3	Motor C	60
	4.1.4	Motor D	61
	4.1.5	Comparison across all motors	62
4.2	Quant	itative Results for HEMA, THFA and IBM	65
	4.2.1	Calibration Curve for HEMA	66
	4.2.2	Calibration Curve for THFA	67
	4.2.3	Calibration Curve for IBM	68
	4.2.4	Check Standard	69
	4.2.5	Quantification of HEMA, THFA and IBM	70
4.3	Recov	ery	71

CHAPTER V: Conclusion & Recommendations 7		
References		75
Appendix 1.	GC Chromatograms for motor A, B, C, D	80
Appendix 2.	Semi Quantitative Results for Chemical Compounds	
	Outgassed from motor A, B, C, D	93
Appendix 3.	Overlaid GC Chromatograms for HEMA. THFA and IBM	101
Appendix 4.	Check Standards Chromatograms	105

LIST OF TABLE

PAGE

Table 1.	Comparison of SHS and DHS techniques	16
Table 2.	TDS 2 Setting	29
Table 3.	Gerstel CIS 4 Setting	31
Table 4.	GCMS Method	33
Table 5.	HEMA Standard Calibration Range	41
Table 6.	THFA Standard Calibration Range	42
Table 7.	IBM Standard Calibration Range	42
Table 8.	Semi Quantitative Amount (ng) of Acrylates and Methacrylates	
	detected in Spindle Motor A, B, C and D	63
Table 9.	HEMA Standard Calibration	66
Table 10	. THFA Standard Calibration	67
Table 11	. IBM Standard Calibration	68
Table 12	. Comparison of the 2 quantification methods	69
Table 13	. Quantified Amount (ng) of 2-HEMA, THFA and IBM	70
Table 14	. Peak Area of Semi Quantitative Standard deuterated hexadecane-d34	73

LIST OF FIGURES

PAGE

Figure 1.	A HDD	3
Figure 2.	Siloxane Peak and Its Mass Spectrum	7
Figure 3.	Mass Spectrum of Tributylchlorotin	8
Figure 4.	Examples of HDD motors	12
Figure 5.	Adhesive Application in HDD Motor	13
Figure 6.	Gerstel TDS2/CIS4 coupled to Agilent GCMS	21
Figure 7.	ATD400 coupled to Agilent GCMS	21
Figure 8.	Schematic diagram of a GCMS	23
Figure 9.	Basic Mechanism In Mass Spectrometer Detection	24
Figure 10.	Gerstel TDS2/ CIS4	27
Figure 11.	TDS 2 Oven	28
Figure 12.	CIS 4	30
Figure 13.	DHS Sampling Container and Oven System	34
Figure 14.	Adsorbent tube	37
Figure 15.	Mass Spectrum of hexadecane-d34	44
Figure 16.	Type of chemical compounds outgassed from Motor A	46
Figure 17.	HEMA peak and its standard mass spectrum	47
Figure 18.	IBM peaks and the mass spectrum	49
Figure 19.	EGDM Peak and Its mass spectrum	50
Figure 20.	Types of chemical compounds outgassed from Motor B	51
Figure 21.	Tetrahydrofurfuryl Alcohol Peak and Its Mass Spectrum	52
Figure 22.	2-Ethyl hexanol Peak and its mass spectrum	53

Figure 23. Alpha-alpha-dimethylbenzene Methanol Peak and Its Mass Spectrum	54
Figure 24. HEA Peak and Its Mass Spectrum	56
Figure 25. THFA Peak and Its Mass Spectrum	57
Figure 26. HPM Peak and Its Mass Spectrum	59
Figure 27. Types of Chemical compounds outgassed from Motor C	60
Figure 28. Chemical compounds outgassed from motor D	61
Figure 29. Acrylate and Methacrylate detected in Motor A, B, C and D	64
Figure 30. Total Outgas from Motor A, B, C and D	65
Figure 31. Calibration Curve of HEMA	66
Figure 32. Calibration Curve for THFA	67
Figure 33. Calibration Curve for IBM	69
Figure 34. Mass Spectrum for Anthracene-d10	71

LIST OF ABBREVIATION

CIS	-	Cold Injection System
DHS	-	Dynamic Headspace
DI	-	Deionized
DOP	-	Dioctyl Phtalate
EGDM	-	Ethylene glycol dimethacrylate
EM	-	Electron Multiplier (EM)
ESCA	-	Electron Spectroscopy for Chemical Analysis
FTIR	-	Fourier Transform Infra Red Spectrometer
GC	-	Gas Chromatography
GCMS	-	Gas Chromatography Mass Spectrometer
HDD	-	Hard Disk Drive
HDI	-	Head Disk Interface
HEA	-	2-hydroxyethyl acrylate
HED	-	High-energy dynode
HEMA	-	2-hydroxyethyl methacrylate
HPM	-	2-hydroxypropyl methacrylate
HSA	-	Headstack Assembly
IBM	-	Isobornyl Methacrylate
IDEMA	-	International Disk Drive Equipment and Material Association
LPC	-	Liquid Particle Counter
MSD	-	Mass Spectrometer Detector
PDMS	-	Polydimethyl siloxane
PSA	-	Pressure Sensitive Adhesives
Rt	-	Retention Time

SEM-EDS	-	Scanning Electron Microscope/Energy Dispersion X-Ray
		Spectrometer
SHS	-	Static Headspace
TDS	-	Thermal Desorption System
THFA	-	Tetrahydrofurfuryl acrylate
TOF-SIMS	-	Time of Flight-Secondary Ion Mass Spectrometry
UV	-	Ultraviolet

LIST OF APPENDICES

- Appendix 1. GC chromatograms for Motor A, B, C and D
- Appendix 2. Semi Quantitative Results for Chemical Compounds outgassed from Motor A, B, C and D
- Appendix 3. Overlaid GC Chromatogram of HEMA, THFA and IBM
- Appendix 4. Check Standard Chromatograms