Development of F₁ hybrids of papaya (Carica papaya L.): Seed production and performance of F₁ hybrids

by

Chan Ying Kwok

PERPUSTAKAAN UNIVERSITI MALAYA

A thesis submitted to the Faculty of Science, University of Malaya, in fulfilment of the requirement for the degree of Doctor of Philosophy

Department of Genetics and Cellular Biology
University of Malaya
Kuala Lumpur, Malaysia

1995

Dimikrofikan pada 17.08.2000
No. Mikrofia 11825
Jumlah Mikrofia 3

HAMSIAH BT. MOHAMAD ZAHARI
UNIT PEPROI GRAFI
PERPUSTAKAAN UTAMA
UNIVERSITI MALAYA
Dedicated to Soon See, Peng-Li and Peng-Joon
for the three happy reasons to savour life

'The canopy that reaches highest into the sky
need not belong to the tree at the very peak of the mountain'
An illustration of genotype - environment effects
ACKNOWLEDGEMENTS

The author wishes to thank the Malaysian Agricultural Research and Development Institute (MARDI) for the scholarship to pursue this post-graduate study on a part-time basis. He is grateful to the Director-General of MARDI and the Director of Fruit Research Division, MARDI, for the full support to carry out this study.

The field trials were conducted at the MARDI research stations at Serdang, Bukit Tangga, Kuala Kangsar, Kundang, Pontian and Kluang. The author would like to thank the heads and farm managers of these stations for their cooperation and assistance in successful implementation of the trials. He is especially grateful to Dr. Lee Chong Soon, Techno-Economics and Social Division, MARDI, for his help in the data processing and analysis.

He would like to express his sincere gratitude to his research staff, Mr. Toh Woon Kong, Mr. Lee Hoon Kok, Ms. Rusna bt Isa, Mr. Mohd. Yusof bin Zun, Mr Chia Jiap Hoi and Mr. Kamal Zaman bin Iberahin for the field management of the trials.

A very special word of thanks also goes to my wife and children, who have given me the moral support, strength, understanding and the 'quiet hours' to complete this dissertation.

He is indebted to his supervisor, Prof. Madya Mak Chai, without whose guidance, advice, constructive criticisms and patient review, this dissertation would not have been successfully completed.
ABSTRACT

Six papaya inbred lines i.e. Sunrise Solo, Eksotika, Line 19, Paris, Subang and Morib were used in the study on the development of F_1 hybrids of papaya. The inbred lines were crossed in a complete diallel to study the seed production behaviour and trends. The performance of the 15 hybrids and six inbred parents was tested over six environments.

The results indicated that all the six inbred parents were compatible in their crosses and reciprocals. Generally, large amounts of seeds, ranging from 238 to over 1 000 seeds, were produced in each successfully pollinated fruit. Differences in seed production were found especially between genotypes and between the two sexes of flower (female and hermaphrodite). Sunrise Solo, Eksotika and Line 19 produced two to three times more seeds than Paris, Subang or Morib. Female flowers that obviated emasculation, were found to produce four times more seeds than hermaphrodites because of better fruit set and higher seed number per fruit. Seed production was also influenced by environments as well as by the age of the trees. Young trees of 9-12 months of age appeared to yield 40% less seeds than 18-24 month-old trees.

Despite the poorer seed yield and increased costs in emasculation in hermaphrodite flowers, it was still found to be economically feasible to produce hybrid seeds from hermaphrodite flowers for Sunrise Solo, Eksotika and Line 19. The lucrative returns arising from a higher proportion of hermaphrodite trees from this seed source appeared to more than compensate for the poor seed yields and high production costs.

The results from the trial over six environments indicated that hybrids were generally superior to inbreds, particularly in characters related to vigour, precocity (earliness to flower) and yield. Heterosis for yield over the better parent was more marked in the first harvest (90%) than in the second harvest (41.5%) because of the precocity and vigour of the hybrids. For characters like fruit weight, height of fructing, total soluble solids % and fruit number, little or no heterosis was found.

Analysis of genotype x environment interaction (GxE) indicated that the stability exhibited by inbreds was more inclined towards Type 1 (biological or static) while the hybrids have stability that was more of the Type 2 (agronomic or dynamic). Simultaneous selection of mean and stability of the hybrids and inbreds for various characters showed that hybrids were

iv
mostly selected in characters related to vigour, earliness and yield. However, all the hybrids were poor in total soluble solids % and none of them were selected for this character.

The economics in F₁ seed production and the use of F₁ papaya hybrids for dessert and processing were presented. The immediate prospects for F₁ papaya hybrids and their future potential were discussed.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. iv

LIST OF TABLES ... xii

LIST OF FIGURES ... xvi

LIST OF PLATES ... xvii

1. INTRODUCTION

1.1. THE PAPAYA INDUSTRY IN MALAYSIA 1

1.1.1. Status of the industry 1
1.1.2. S.W.O.T. analysis of industry 3

1.1.2.1. Strengths .. 3
1.1.2.2. Weaknesses 3
1.1.2.3. Opportunities 4
1.1.2.4. Threats .. 4

1.2. STATUS OF PAPAYA RESEARCH 5

1.3. BASIS FOR F1 HYBRIDS OF PAPAYA 7

1.3.1. Conventional cultivars 7
1.3.2. Potential of F1 papaya hybrids 7
1.3.3. Scope of study 8

2. LITERATURE REVIEW 10

2.1. BACKGROUND OF PAPAYA 10

2.1.1. Origin and distribution 10
2.1.2. Taxonomy ... 10
2.1.3. Mating system 11
2.1.4. General biology 12

2.1.4.1. Stem ... 12
2.1.4.2. Leaves .. 12
2.1.4.3. Fruit ... 12
2.1.4.4. Seed .. 12
2.1.5. Floral biology ... 13
 2.1.5.1. Flower types and sexes 13
 2.1.5.2. Derivation of floral types 13
 2.1.5.3 Genetics of sex expression 15
 2.1.5.4 Relationship of sex and fruit shape 17
 2.1.5.5 Environmental influences on sex expression . 19

2.1.6. Propagation ... 20
 2.1.6.1. Seed ... 20
 2.1.6.2. Vegetative propagation 22
 2.1.6.3. In vitro propagation 23

2.1.7. Varieties .. 24
 2.1.7.1. Self-pollinated 24
 2.1.7.2. Cross-pollinated 24
 2.1.7.3. Hybrids 25
 2.1.7.4. Clonal varieties 25

2.2. HETEROSIS .. 26
 2.2.1. Definition and computation 26
 2.2.2. Genetic basis for heterosis 26
 2.2.2.1. Non-allelic gene interaction 26
 2.2.2.2. Inter-allelic interaction:
 dominant-overdominant theory 27
 2.2.2.3. Non-genomic heterosis 28

2.2.3. Exploiting heterosis in crops 28
 2.2.3.1. Crop range in heterosis breeding 28
 2.2.3.2. Expressions of heterosis 29
 2.2.3.3. Environmental influences on heterosis ... 31

2.2.4. Limitations in exploitation of heterosis 32
 2.2.4.1. Problems in hybrid seed production 32
 2.2.4.2. Inbreeding depression 34
 2.2.4.3. Undesirable characters accompanying yield heterosis . 34

2.2.5. Economic justifications for F₁ hybrids 35
2.3. GENOTYPE X ENVIRONMENT INTERACTION 36

2.3.1. Definition and computation 36
 2.3.1.1. Types of GE interaction 37
 2.3.1.2. Partitioning GE components 37

2.3.2. Stability .. 38
 2.3.2.1. The basis for stability 39
 2.3.2.2. Statistics for evaluating stability 40
 2.3.2.3. Concepts of stability 41

2.3.3. Selection for yield and stability 44
 2.3.3.1. Mean and CV distribution 45
 2.3.3.2. Non-parametric ranking 45
 2.3.3.3. Superiority measure (P̄) 46
 2.3.3.4. Rank-sum and rank-product 46

3. MATERIALS AND METHODS 48

3.1. F₁ SEED PRODUCTION 48
 3.1.1. Seed production using female flowers 48
 3.1.2. Seed production using hermaphroditic flowers 48
 3.1.3. Crossing procedure 49
 3.1.4. Data on seed production and quality 49

3.2. PERFORMANCE OF F₁ HYBRIDS IN GxE TRIAL 49

3.2.1. Genotype .. 49
 3.2.1.1. Sunrise Solo, Eksotika and Line 19 50
 3.2.1.2. Morib .. 50
 3.2.1.3. Paris ... 52
 3.2.1.4. Subang ... 52

3.2.2. Environment .. 52
 3.2.3. Experimental design and layout 55
 3.2.4. Agronomic practices 55
 3.2.5. Data collection 56
 3.2.6. Statistical analysis 57
 3.2.6.1. Analysis of variance 57
 3.2.6.2. Analysis of GxE and stability 58
3.2.6.3. Simultaneous selection for mean and stability 60
3.2.6.4. Heterosis 61

4. RESULTS 62

4.1. SEED PRODUCTION USING FEMALE FLOWERS 62
 4.1.1. ANOVA of seed characters 62
 4.1.2. Effect of female (ovule) and male (pollen) 62
 4.1.3. Effect of age of tree 65
 4.1.4. F1 seed yield and estimated seed costs 66

4.2. SEED PRODUCTION USING HERMAPHRODITE FLOWERS 68
 4.2.1. Combined ANOVA over environments 68
 4.2.2. Environmental effect 68
 4.2.3. Genotypic effect 68
 4.2.4. Genotype x environment effect 70
 4.2.5. Seed production: hermaphrodite v. female 72

4.3. PERFORMANCE OF F1 HYBRIDS IN GxE TRIAL 75
 4.3.1. ANOVA examined by environments 75
 4.3.2. Genotypic means examined by environments 75
 4.3.3. Combined ANOVA over six environments 80
 4.3.3.1. Environmental effect 95
 4.3.3.2. Genotypic effect 97

4.3.4. GxE analysis and stability in selection of genotypes 106
 4.3.4.1. Mean and CV distribution 107
 4.3.4.2. Non parametric ranking 118
 4.3.4.3. Rank sum and rank product 129

4.3.5. Overall performance of genotypes
 based on various ranking methods 131
 4.3.5.1. Method of scoring 140
 4.3.5.2. Performance in vegetative characters 140
 4.3.5.3. Performance in fruit characters 141
 4.3.5.4. Performance in yield and yield components 142

4.3.6. Selection of inbreds v. hybrids 143
4.4. HETEROESIS153

4.4.1. Heterosis in vegetative characters153
4.4.2. Heterosis in fruit and fruting characters154
4.4.3. Heterosis in yield components and yield154
4.4.4. Heterotic response over environments158
4.4.5. Heterotic effects of parents163

5. DISCUSSION .. .166

5.1. F₁ SEED PRODUCTION166
5.1.1. Factors affecting seed production and quality166
 5.1.1.1. Environment effect166
 5.1.1.2. Genotypic effect167
 5.1.1.3. Age of tree167
 5.1.1.4. Sex of flowers168
5.1.2. Cost benefits in using hermaphrodites for F₁ seed production .. .168
5.1.3. Commercial production of F₁ papaya seeds173
 5.1.3.1. Scale and layout173
 5.1.3.2. Production volume173
 5.1.3.3. Economics of F₁ seed production174
5.1.4. Improving efficiency in F₁ seed production175

5.2. PERFORMANCE OF F₁ HYBRIDS IN GxE TRIAL176
5.2.1. Environment: Suitability for papaya176
 5.2.1.1. Delineating suitable regions for papaya176
 5.2.1.2. Suitability of environments in GxE trial177
 5.2.1.3. Marginal soils for papaya179
5.2.2. Genotype: Inbred v. Hybrid181
 5.2.2.1. Vegetative characters181
 5.2.2.2. Fruit characters182
 5.2.2.3. Incidence of malformed top disease184
 5.2.2.4. Yield components and yield184
5.2.3. Genotype x Environment186
 5.2.3.1. Stability in performance187
5.2.3.2. Simultaneous selection of mean and stability. 188
5.2.3.3. General and specific adaptability 191

5.3. HETEROSIS ... 198

5.3.1. Exploitation of heterosis in papaya. 198

5.3.1.1. Differential heterosis in characters 198
5.3.1.2. Differential heterosis between sibs and wide crosses 200
5.3.1.3. Differential heterosis over environments 200
5.3.1.4. Strategies for exploitation of heterosis 202

5.3.2. Towards ceiling yields .. 203

5.4. PROSPECTS AND LIMITATIONS OF F₁ PAPAYA HYBRIDS. 205

5.4.1. Economics of F₁ hybrids for production of table fruit 205
5.4.2. Economics of F₁ hybrids for production of processing fruit 206
5.4.3. F₁ hybrids for annual cropping: Beating the PRSV 208
5.4.4. Limitations of F₁ hybrids 210

5.4.4.1. Acceptance of variety 210
5.4.4.2. Transition woes .. 210

5.5. CONCLUDING REMARKS .. 211

6. SUMMARY ... 212

7. REFERENCES ... 216

BIOGRAPHICAL SKETCH ... 229
<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.</td>
<td>Pollination combinations and sex segregation in papaya</td>
</tr>
<tr>
<td>2.2.</td>
<td>Range of food crops and year of release of first commercial hybrids (after Mayo, 1987)</td>
</tr>
<tr>
<td>3.1.</td>
<td>Description of environments and planting dates</td>
</tr>
<tr>
<td>3.2.</td>
<td>Expected mean squares and tests of significance in ANOVA</td>
</tr>
<tr>
<td>4.1.</td>
<td>Analysis of variance for number of seeds, % pre-germinated seeds and % floating seeds</td>
</tr>
<tr>
<td>4.2.</td>
<td>Hybrid seed production as influenced by maternal and pollen inbred parents</td>
</tr>
<tr>
<td>4.3.</td>
<td>Hybrid seed production and time of fruit maturity as influenced by age of trees</td>
</tr>
<tr>
<td>4.4.</td>
<td>Seed yield and estimated seed costs of hybrids developed from six inbred parents.</td>
</tr>
<tr>
<td>4.5.</td>
<td>Analysis of variance of six characters for hybrid seed production over two environments</td>
</tr>
<tr>
<td>4.6.</td>
<td>F_1 hybrid seed production at two environments</td>
</tr>
<tr>
<td>4.7.</td>
<td>Means of six maternal parents in hybrid seed production</td>
</tr>
<tr>
<td>4.8.</td>
<td>Means of six pollen parents in hybrid seed production</td>
</tr>
<tr>
<td>4.9.</td>
<td>Means of six genotypes at two environments for hybrid seed production</td>
</tr>
<tr>
<td>4.10.</td>
<td>Seed production between females and hermaphrodites</td>
</tr>
<tr>
<td>4.11.</td>
<td>Mean comparison between females and hermaphrodites of six genotypes in the production of hybrid seeds</td>
</tr>
<tr>
<td>4.12.</td>
<td>Summarised results of ANOVA at each environment for four vegetative characters</td>
</tr>
<tr>
<td>Table No.</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>4.13</td>
<td>Summarised results of ANOVA at each environment for three fruit characters</td>
</tr>
<tr>
<td>4.14</td>
<td>Summarised results of ANOVA at each environment for six yield characters</td>
</tr>
<tr>
<td>4.15</td>
<td>Genotypic means at six environments for trunk diameter</td>
</tr>
<tr>
<td>4.16</td>
<td>Genotypic means at six environments for plant height</td>
</tr>
<tr>
<td>4.17</td>
<td>Genotypic means at six environments for lamina width</td>
</tr>
<tr>
<td>4.18</td>
<td>Genotypic means at six environments for petiole length</td>
</tr>
<tr>
<td>4.19</td>
<td>Genotypic means at six environments for fruit weight</td>
</tr>
<tr>
<td>4.20</td>
<td>Genotypic means at six environments for carpellody occurrence (%)</td>
</tr>
<tr>
<td>4.21</td>
<td>Genotypic means at six environments for total soluble solids %</td>
</tr>
<tr>
<td>4.22</td>
<td>Genotypic means at six environments for malformed top disease (MTD) incidence</td>
</tr>
<tr>
<td>4.23</td>
<td>Genotypic means at six environments for earliness (days to flower)</td>
</tr>
<tr>
<td>4.24</td>
<td>Genotypic means at six environments for height of fruit</td>
</tr>
<tr>
<td>4.25</td>
<td>Genotypic means at six environments for fruit number</td>
</tr>
<tr>
<td>4.26</td>
<td>Genotypic means at six environments for yield of first harvest</td>
</tr>
<tr>
<td>4.27</td>
<td>Genotypic means at six environments for yield of second harvest</td>
</tr>
<tr>
<td>4.28</td>
<td>Genotypic means at six environments for total yield</td>
</tr>
<tr>
<td>4.29</td>
<td>Combined ANOVA of 21 genotypes over six environments</td>
</tr>
<tr>
<td>4.30</td>
<td>Environment means for four vegetative characters</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>4.31.</td>
<td>Environment means for three fruit characters and incidence of malformed top disease (MTD)</td>
</tr>
<tr>
<td>4.32.</td>
<td>Environment means for six yield characters</td>
</tr>
<tr>
<td>4.33.</td>
<td>Genotypic means for four vegetative characters</td>
</tr>
<tr>
<td>4.34.</td>
<td>Genotypic means for three fruit characters and incidence of malformed top disease (MTD)</td>
</tr>
<tr>
<td>4.35.</td>
<td>Genotypic means for six yield characters</td>
</tr>
<tr>
<td>4.36.</td>
<td>Non parametric ranking indices for selection of genotypes for trunk diameter</td>
</tr>
<tr>
<td>4.37.</td>
<td>Non parametric ranking indices for selection of genotypes for plant height</td>
</tr>
<tr>
<td>4.38.</td>
<td>Non parametric ranking indices for selection of genotypes for fruit weight</td>
</tr>
<tr>
<td>4.39.</td>
<td>Non parametric ranking indices for selection of genotypes for total soluble solids %</td>
</tr>
<tr>
<td>4.40.</td>
<td>Non parametric ranking indices for selection of genotypes for earliness (days to flower)</td>
</tr>
<tr>
<td>4.41.</td>
<td>Non parametric ranking indices for selection of genotypes for height of first fruit</td>
</tr>
<tr>
<td>4.42.</td>
<td>Non parametric ranking indices for selection of genotypes for fruit number</td>
</tr>
<tr>
<td>4.43.</td>
<td>Non parametric ranking indices for selection of genotypes for yield (harvest 1)</td>
</tr>
<tr>
<td>4.44.</td>
<td>Rank sum and rank product for selection of genotypes for trunk diameter</td>
</tr>
<tr>
<td>4.45.</td>
<td>Rank sum and rank product for selection of genotypes for plant height</td>
</tr>
<tr>
<td>4.46.</td>
<td>Rank sum and rank product for selection of genotypes for fruit weight</td>
</tr>
</tbody>
</table>
4.47. Rank sum and rank product for selection of genotypes for total soluble solids % .. 135
4.48. Rank sum and rank product for selection of genotypes for earliness (days to flowering) 136
4.49. Rank sum and rank product for selection of genotypes for height of first fruit .. 137
4.50. Rank sum and rank product for selection of genotypes for fruit number .. 138
4.51. Rank sum and rank product for selection of genotypes for yield 1 (harvest 1) 139
4.52. Overall rank of genotypes in selection for trunk diameter .. 144
4.53. Overall rank of genotypes in selection for plant height .. 145
4.54. Overall rank of genotypes in selection for fruit weight .. 146
4.55. Overall rank of genotypes in selection for total soluble solids % (TSS) .. 147
4.56. Overall rank of genotypes in selection for earliness (days to flower) .. 148
4.57. Overall rank of genotypes in selection for height of fruit .. 149
4.58. Overall rank of genotypes in selection for fruit number .. 150
4.59. Overall rank of genotypes in selection for yield (harvest 1) .. 151
4.60. Composition of inbred (including sibs) and hybrid in the best and worst five selections for 14 characters .. 152
4.61. Heterosis estimates over mid and better parents of 15 hybrids for vegetative characters .. 155
4.62. Heterosis estimates over mid and better parents of 15 hybrids for fruit characters .. 156
4.63. Heterosis estimates over mid and better parents of 15 hybrids for fruit number and yield .. 157

xv
4.64. Heterosis estimates over mid and better parents for trunk diameter over six environments ... 160
4.65. Heterosis estimates over mid and better parents for earliness over six environments ... 161
4.66. Heterosis estimates over mid and better parents for yield 1 (first harvest) over six environments ... 162
4.67. Heterotic effects (% over BP) of parents for trunk diameter and yield ... 163
5.1. Cost benefits of using hermaphrodites compared with females for hybrid seed production of Line 19 and Subang ... 171
5.2. Percentage of stable inbreds and hybrids derived from CV and stability variance (σ_i^2) methods ... 189
5.3. Economics of production of Mo x So compared with Eksotika and Eksotika II for table fruit ... 207
5.4. Economics of production of Mo x So compared with Pa x Pa for processing fruit ... 208

LIST OF FIGURES

Figure

2.1. Flower types of *Carica papaya* L. ... 14
3.1. Locations and rainfall patterns of the six environments ... 53
4.1. Mean and CV distribution of 21 genotypes for trunk diameter ... 110
4.2. Mean and CV distribution of 21 genotypes for plant height ... 111
4.3. Mean and CV distribution of 21 genotypes for fruit weight ... 112
4.4. Mean and CV distribution of 21 genotypes for TSS% ... 113
4.5. Mean and CV distribution of 21 genotypes for earliness 114
4.6. Mean and CV distribution of 21 genotypes for height of first fruit 115
4.7. Mean and CV distribution of 21 genotypes for fruit number 116
4.8. Mean and CV distribution of 21 genotypes for yield (harvest 1) 117
4.9. Relationship of heterosis (yield 1) with environment index (trunk diameter) 164
4.10. Relationship of heterosis (yield 1) with environment index (combined yield) ... 165
5.1. Adaptability of hybrids and inbreds ... 194

LIST OF PLATES

Plate

2.1. Female (left) and hermaphrodite (right) flowers ... 18
2.2. Female (left) and hermaphrodite (right) fruits .. 18
3.1. Sunrise Solo (top), Line 19 (middle) and Eksotika (bottom) fruits 51
3.2. Morib fruit .. 51
3.3. Paris fruit ... 51
3.4. Subang fruit ... 51
5.1. Mo x So hybrid with general adaptability at mediocre environment (Kluang) compared with the two parents (Mo - top left and So - top right) 195
5.2. Su x Pa hybrid adapted to poor environment (Bukit Tangga) compared with the parents (Su - top left and Pa - top right) 196
5.3. Mo x 19 hybrid adapted to good environments (Pontian) compared with the parents (Mo - top left and 19 - top right). 197