TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter One – Introduction and Application of Combinatorial Technology and Market Analysis</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Catalysis: General Overview</td>
<td>1</td>
</tr>
<tr>
<td>1.2 COMBICAT and Combinatorial Technology</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Motivation, Market and Demand</td>
<td>8</td>
</tr>
<tr>
<td>1.4 Outline of Research Strategy</td>
<td>15</td>
</tr>
<tr>
<td>1.5 Scope of Work</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter Two – Literature Review</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Conventional Catalyst System</td>
<td>19</td>
</tr>
<tr>
<td>2.2. Methods of Catalyst Preparation</td>
<td></td>
</tr>
<tr>
<td>2.2.1 Co-Precipitation</td>
<td>21</td>
</tr>
<tr>
<td>2.2.2 Incipient Wetness Impregnation</td>
<td>22</td>
</tr>
<tr>
<td>2.2.3 Sol-gel method</td>
<td>23</td>
</tr>
<tr>
<td>2.2.4. Ion-exchange method</td>
<td>24</td>
</tr>
<tr>
<td>2.3 Hydrogenation Catalyst System and Properties</td>
<td></td>
</tr>
<tr>
<td>2.3.1 Cu-Cr catalysts</td>
<td>24</td>
</tr>
<tr>
<td>2.3.2 Copper-Aluminium Oxide</td>
<td>25</td>
</tr>
<tr>
<td>2.3.3 Cu-Fe -Al catalysts</td>
<td>25</td>
</tr>
<tr>
<td>2.3.4 Cu-Zn catalysts</td>
<td>26</td>
</tr>
<tr>
<td>2.4 Reaction Pathway</td>
<td>28</td>
</tr>
<tr>
<td>2.5. Development of Fatty Alcohol Process Technology</td>
<td>31</td>
</tr>
</tbody>
</table>
Chapter 3 – Experimental Details

3.1 Materials and Gases

3.2 Methodology of Catalyst Synthesis and Activation

3.2.1 Preparation of Catalyst Precursors

3.2.1. (a) Preparation of precursor P1 – nitrates route

3.2.1. (b) Preparation of precursor P2 – citrate-nitrate route

3.2.2. Catalyst Preparation Procedure – Impregnation, SIWI and DIWI

3.2.3. Catalyst Activation

3.3 Catalytic Performance: High Throughput Screening

3.4 Product Analysis

3.4.1. GC Calibration

3.4.2. Activity Calculation

3.5 General Characterization Procedures

3.5.1 Structural Analysis

3.5.1. (a) X-Ray Powder Diffraction (XRD) Analysis

3.5.1.(b) Nitrogen Physisorption Measurements

3.5.1. (c) Scanning electron microscopy and X-ray Dispersive Analysis

(SEM and EDX)

3.5.1. (d) Diffuse reflectance of UV-Visible

3.5.1. (e) Fourier Transform Infrared Transmission (FTIR)

3.5.2 Thermal Analysis

3.5.2. (a) Thermogravimetric (TGA) Analysis and Differential Scanning Calorimetric (DSC)

3.5.2. (b) Temperature-Programmed Reduction (TPR)
Chapter Four - Catalytic Performances: High Throughput Catalysts

Screening

4.1 Introduction of Preliminary Work

4.2 Catalytic Performance

4.2.1 General Overview

4.2.2 Influence of Preparation Method and Support

4.2.3 Influence of Precursors

4.2.4 Influence of binary catalysts: Addition of 2nd Metal (Cu:M2)

4.2.5 Influence of metal-metal ratio (Cu: M2)

4.3 General Conclusion of Catalytic Performances

Chapter Five - Discussion on Structural and Thermal Properties of Catalysts

5.1 Structural Analysis

5.1.1 Powder X-ray diffraction (XRD)

5.1.2 Surface Area Measurement

5.1.3 SEM and EDX: Structural and Morphology Study

5.1.4 UV-Vis characterization

5.1.5 FTIR Characterization

5.2 Thermal Analysis

5.2.1 TGA and DSC

5.2.2 Reduction Behavior
Chapter Six - Conclusion

6.1. Overall Conclusion of Catalytic Performances 197
6.2. Overall Conclusion of Catalysts Properties 197
6.3. Future Prospects and Challenges 199

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>206</td>
</tr>
<tr>
<td>Appendix B</td>
<td>208</td>
</tr>
<tr>
<td>Appendix C</td>
<td>210</td>
</tr>
<tr>
<td>Appendix D</td>
<td>211</td>
</tr>
<tr>
<td>Appendix E</td>
<td>212</td>
</tr>
<tr>
<td>Appendix F</td>
<td>216</td>
</tr>
<tr>
<td>Appendix G</td>
<td>218</td>
</tr>
<tr>
<td>Appendix H</td>
<td>219</td>
</tr>
<tr>
<td>Bibliography</td>
<td>220</td>
</tr>
<tr>
<td>Figure</td>
<td>Title</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>Figure 1.1:</td>
<td>General Illustration of Catalytic Process.</td>
</tr>
<tr>
<td>Figure 1.2:</td>
<td>Process Development – Acceleration of Discovery and Development by Combinatorial Technology.</td>
</tr>
<tr>
<td>Figure 1.3:</td>
<td>Route to the New Material Discovery.</td>
</tr>
<tr>
<td>Figure 1.4:</td>
<td>Basic Oleochemicals (Bold) and Downstream Oleochemicals and Derivatives (Italic Bold) Production Flow.</td>
</tr>
<tr>
<td>Figure 1.5:</td>
<td>Main Applications of Fatty Alcohol.</td>
</tr>
<tr>
<td>Figure 1.6:</td>
<td>The Annual Production of Natural Fatty alcohol vs. Synthetic Fatty Alcohol.</td>
</tr>
<tr>
<td>Figure 1.7:</td>
<td>Foreseeable Future Market Drivers in Fatty Alcohol Industry.</td>
</tr>
<tr>
<td>Figure 1.8:</td>
<td>World Fatty Alcohol Capacity Development (‘000 tonnes).</td>
</tr>
<tr>
<td>Figure 1.9:</td>
<td>ASEAN Fatty Alcohol Capacity Development (‘000 tonnes).</td>
</tr>
<tr>
<td>Figure 1.10:</td>
<td>Selection of Catalyst Parameters 1.</td>
</tr>
<tr>
<td>Figure 1.11:</td>
<td>Selections of Catalyst Parameters 2.</td>
</tr>
<tr>
<td>Figure 2.1:</td>
<td>Byproduct Formation in the Hydrogenation of Fatty Methyl Ester, as proposed by KAO.</td>
</tr>
<tr>
<td>Figure 2.2:</td>
<td>Reaction Pathway for the Hydrogenation of Fatty Methyl Esters over Cu-chromite Catalysts, as proposed by Procter and Gamble.</td>
</tr>
<tr>
<td>Figure 3.1:</td>
<td>Overview of Synthesis and Testing Work Flow.</td>
</tr>
<tr>
<td>Figure 3.2:</td>
<td>Catalyst Preparation Procedure.</td>
</tr>
<tr>
<td>Figure 3.3:</td>
<td>Example of Dried Cake During The First Hour Drying.</td>
</tr>
<tr>
<td>Figure 3.4:</td>
<td>Example of the Calcined Material.</td>
</tr>
<tr>
<td>Figure 3.5:</td>
<td>Quartz Reactor with Approximate 200mg Catalyst.</td>
</tr>
<tr>
<td>Figure 3.6:</td>
<td>Pretreatment Unit, Equipped with H₂ gas lines.</td>
</tr>
<tr>
<td>Figure 3.7:</td>
<td>Torch to Seal Catalyst Bulbs.</td>
</tr>
<tr>
<td>Figure 3.8:</td>
<td>Sealed Bulb.</td>
</tr>
<tr>
<td>Figure 3.9:</td>
<td>12-parallel High-throughput Reactors.</td>
</tr>
</tbody>
</table>
Figure 3.10: Traceability of each Experiment Profile by Software.

Figure 3.11: Position of O-ring and Catalyst Bulb.

Figure 3.12: Sealed Reactors.

Figure 3.13: Automated Autoclave Control during Experimental Process.

Figure 3.14: Typical Gas Chromatogram Generated for Products.

Figure 3.15: The IUPAC Classification of Adsorption Isotherms

Figure 4.1: Project Work Flow – Application of Combinatorial Technology

Figure 4.2: Yield to ethanol and ethyl acetate vs. methyl acetate conversion at 423-623 K and a H₂/methyl acetate molar ratio of 7.5 on monometallic catalysts with silica and alumina support. Only mono-metallic catalyst copper (blue) and iron (yellow) gave significant activities.

Figure 4.3: Yield to ethanol and ethyl acetate vs. methyl acetate conversion for monometallic catalysts at a H₂/methyl acetate molar ratio of 7.5 and 423-623 K. Catalyst are grouped by precursor salt and pH of the precursor solution. There is no definite trend of the effect of pH on catalysts (especially between pH 5 and 7). However, it was observed under light microscope that the most stable and homogeneous solution occurred at pH 7.

Figure 4.4: Yield to ethanol and ethyl acetate vs. methyl acetate conversion for monometallic catalysts at a H₂/methyl acetate molar ratio of 7.5 and 423-623 K. Catalyst are grouped by precursor additives: none (nitratre), citric acid (citrate) and ammonium citrate (AC). Improved precursor (addition of citric acid; citrate route) seems to be more interesting compared to the sole nitratre precursor.

Figure 4.5: Performance observed at 423-623 K and a H₂/methyl acetate molar ratio of 7.5, mono-copper catalysts (red), bimetallic Cu-Co (blue), bi-metallic Cu-Fe (yellow), bi-metallic Cu-Zn (light grey) and bi-metallic Cu-Ni (green). Catalytic performance of copper improved with the addition of 2nd metal; the top performing catalysts from Cu-Fe and Cu-Zn catalyst series.

Figure 4.6: Selectivity towards Dodecanol (Y-axis) vs. Conversion of Methyl Laurate (X-Axis) for catalysts tested at 100bar and 523.15K for 4 hours.

Figure 4.7: Selectivity towards Dodecanol (Y-axis) vs. Yield of Dodecanol (X-Axis) for catalysts tested at 100bar and 523.15K for 4 hours.

Figure 4.8: Activity in mmol Dodecanol formed/gram catalyst/per hours (Y-axis) vs. Conversion of Methyl Laurate (X-Axis) for catalysts tested at 100bar and 523.15K for 4 hours.

Figure 4.9: Activity expressed as mmol dodecanol formed/gram catalyst used/hours of reaction (Axis-Y) vs. metal composition of catalysts prepared via nitratre route (precursor P1). Most of the DIWI catalysts performed better than SIWI, with 2 categories exceptions: Cu-Fe at/at 3:1 and Cu-Zn at/at 1:1.
Figure 4.10: Activity expressed as mmol dodecanol formed/gram catalyst used/hours of reaction (Axis-Y) vs. metal composition of catalysts prepared via citrate-nitrate route (precursor P2). The higher performance of the DIWI catalysts are more apparent and significant.

Figure 4.11: Activity expressed as mmol dodecanol formed/gram catalyst used/hours of reaction (Axis-Y) vs. metal composition of catalysts prepared using single incipient wetness impregnation.

Figure 4.12: Activity expressed as mmol dodecanol formed/gram catalyst used/hours of reaction (Axis-Y) vs. metal composition of catalysts prepared using double incipient wetness impregnation.

Figure 4.13: Activity expressed as mmol dodecanol formed/gram catalyst used/hours of reaction (Axis-Y) grouped according to method preparation and precursors.

Figure 4.14: Activity expressed as mmol dodecanol formed/gram catalyst used/hours of reaction (Axis-Y) grouped according to codes: (A) SIWI catalyst, (B) DIWI catalysts.

Figure 5.1: X-ray diffraction patterns of precursor Cu-Zn samples (including mono-copper sample) prepared via citrate-nitrate route. All precursors and bare support were dried in air at 383 K for 16 hours.

Figure 5.2: X-ray diffraction patterns of calcined Cu-Zn samples (including mono-copper sample) prepared via citrate-nitrate route. Calcined material and bare support were calcined in air at 723 K for 2 hours.

Figure 5.3: X-ray diffraction pattern of precursor Cu-Zn sample B07 prepared via nitrate route. Precursor and bare support were dried in air at 383 K for 16 hours.

Figure 5.4: X-ray diffraction pattern of calcined Cu-Zn sample B07 prepared via nitrate route. Calcined material and bare support were calcined in air at 723 K for 2 hours.

Figure 5.5: X-ray diffraction patterns of precursor Cu-Fe samples (including mono-copper sample) prepared via citrate-nitrate route. All precursors and bare support were dried in air at 383 K for 16 hours.

Figure 5.6: X-ray diffraction patterns of calcined Cu-Fe samples (including mono-copper sample) prepared via citrate-nitrate route. Calcined material and bare support were calcined in air at 723 K for 16 hours.

Figure 5.7: X-ray diffraction pattern of precursor Cu-Fe sample B04 prepared via nitrate route. Precursor and bare support were dried in air at 383 K for 16 hours.

Figure 5.8: X-ray diffraction pattern of calcined Cu-Fe sample B04 prepared via nitrate route. Calcined material and bare support were calcined in air at 723 K for 2 hours.
Figure 5.9: Nitrogen adsorption-desorption isotherms of silica support (CS 2050). Also (inset) the pore distribution of silica.

Figure 5.10: Pore Size Distribution of A14 and B14; precursor and calcined samples.

Figure 5.11: Nitrogen adsorption-desorption isotherm of A14 and B14; precursor and calcined samples.

Figure 5.12: Pore Size Distribution of A11 and B11; precursor and calcined samples.

Figure 5.13: Nitrogen adsorption-desorption isotherm of A11 and B11; precursor and calcined samples.

Figure 5.14: Pore Size Distribution of calcined samples prepared via nitrate route (precursor P1).

Figure 5.15: Nitrogen adsorption-desorption isotherm of calcined samples prepared via nitrate route (precursor P1).

Figure 5.16: Pore Size Distribution of Cu-Zn calcined samples prepared via citrate-nitrate route (precursor P2).

Figure 5.17: Nitrogen Adsorption - Desorption Isotherm of Cu-Zn calcined materials prepared via citrate-nitrate route (precursor P2).

Figure 5.18: Pore Size Distribution of Cu-Fe calcined samples prepared via citrate-nitrate route (precursor P2).

Figure 5.19: Nitrogen Adsorption - Desorption Isotherm of Cu-Fe calcined materials prepared via citrate-nitrate route (precursor P2).

Figure 5.20: SEM-image of the CS 2050 silica, thermally pre-treated at 573 K prior to impregnation and subjected to the same thermal treatment as other catalysts after impregnation.

Figure 5.21: SEM-image of C1; calcined at 723K.

Figure 5.22: SEM-image of C2; calcined at 723K.

Figure 5.23: EDX of B01; calcined at 723 K.

Figure 5.24: SEM-image of B01; calcined at 723K.

Figure 5.25: EDX of B08; calcined at 723 K.

Figure 5.26: SEM-image of B08; calcined at 723K.

Figure 5.27: EDX of B14; calcined at 723 K.
Figure 5.28: SEM-image of B14; calcined at 723K.

Figure 5.29: EDX of B11; calcined at 723 K.

Figure 5.30: SEM-image of B11; calcined at 723K.

Figure 5.31: EDX of B07; calcined at 723 K.

Figure 5.32: SEM-image of B07; calcined at 723K.

Figure 5.33: EDX of B04; calcined at 723 K.

Figure 5.34: SEM-image of B04; calcined at 723K.

Figure 5.35: EDX of B12; calcined at 723 K.

Figure 5.36: SEM-image of B12; calcined at 723K.

Figure 5.37: EDX of B13; calcined at 723 K.

Figure 5.38: SEM-image of B13; calcined at 723K.

Figure 5.39: EDX of B09; calcined at 723 K.

Figure 5.40: SEM-image of B09; calcined at 723K.

Figure 5.41: EDX of B10; calcined at 723 K.

Figure 5.42: SEM-image of B10; calcined at 723K.

Figure 5.43: DR UV/Vis spectra of precursor Cu-Zn samples supported on SiO₂ prepared via citrate-nitrate route (precursor P2).

Figure 5.44: DR UV/Vis spectra of calcined Cu-Zn samples supported on SiO₂ prepared via citrate-nitrate route (precursor P2).

Figure 5.45: DR UV/Vis spectra of Cu-Fe samples supported on SiO₂ prepared via citrate-nitrate route (precursor P2).

Figure 5.46: DR UV/Vis spectra of calcined Cu-Fe samples supported on SiO₂ prepared via citrate-nitrate route (precursor P2).

Figure 5.47: DR UV/Vis spectra of precursor samples supported on SiO₂ and prepared via nitrate route (precursor P1).

Figure 5.48: DR UV/Vis spectra of calcined samples supported on SiO₂ and prepared via nitrate route (precursor P1).

Figure 5.49: FTIR spectra of precursor and calcined Cu-Zn samples supported on silica; prepared via citrate-nitrate route (precursor P2).
Figure 5.50: FTIR spectra of precursor and calcined Cu-Fe samples supported on silica; prepared via citrate-nitrate route (precursor P2).

Figure 5.51: FTIR spectra of precursor and calcined samples supported on silica; prepared via nitrate route (precursor P1).

Figure 5.52: Thermal Gravimetry Analysis of B01 and B07, sample precursors prepared via nitrate route, precursor P1.

Figure 5.53: Differential Thermal Analysis (DTG) of B01 and B07, sample precursors prepared via nitrate route, precursor P1.

Figure 5.54: Thermal Gravimetry Analysis of B01 and B04, sample precursors prepared via nitrate route, precursor P1.

Figure 5.55: Differential Thermal Analysis (DTG) of B01 and B04, sample precursors prepared via nitrate route, precursor P1.

Figure 5.56: Thermal Gravimetry Analysis of Cu-Zn sample precursors (including mono-copper sample) prepared via nitrate-citrate route, precursor P2.

Figure 5.57: Differential Thermal Analysis (DTG) of Cu-Zn sample precursors (including mono-copper sample) prepared via nitrate-citrate route, precursor P2.

Figure 5.58: Thermal Gravimetry Analysis of Cu-Fe sample precursors (including mono-copper sample) prepared via nitrate-citrate route, precursor P2.

Figure 5.59: Differential Thermal Analysis (DTG) of Cu-Fe sample precursors (including mono-copper sample) prepared via nitrate-citrate route, precursor P2.

Figure 5.60: DSC thermogram of Cu-Zn precursor samples (including mono-copper samples) prepared via precursor P1 and P2.

Figure 5.61: DSC thermogram of Cu-Fe precursor samples (including mono-copper samples) prepared via precursor P1 and P2.

Figure 5.62: TPR profile of commercial CuO (black), calcined sample B11 (blue) and calcined sample B14 (red), parameters mimicking the reduction procedure at 623 K, 5 K min\(^{-1}\) and isotherm for 2 hours.

Figure 5.63: TPR profile of calcined Cu-Zn samples (including mono-copper sample) prepared via citrate-nitrate route, precursor P2.

Figure 5.64: TPR profile of calcined Cu-Zn sample B07 and mono-copper sample B01 prepared via nitrate route, precursor P1.

Figure 5.65: TPR profile of calcined Cu-Fe samples (including mono-copper sample) prepared via citrate-nitrate route, precursor P2.
Figure 5.66: TPR profile of calcined Cu-Fe samples B04 and mono-copper sample B01 prepared via nitrate route, precursor P1.

Figure 5.67: TPR profile of standard reference, C1, zinc supported on silica.

Figure 5.68: TPR profile of standard reference, C2, iron supported on silica.

Figure A.1: pH adjustment of copper(II)nitrate solution with ammonium hydroxide.

Figure A.2: pH adjustment of zinc(II)nitrate solution with ammonium hydroxide.

Figure A.3: pH adjustment of iron(III)nitrate solution with ammonium hydroxide.

Figure E.1: GC calibration curve.

Figure G.1: DR UV-Vis spectra of bare support silica CS 2050, copper nitrate 98% from Alfa Aesar, copper citrate commercial chemical salt from Pfaltz and Bauer, 98.9% and copper oxide commercial chemical salt from Aldrich, 99.0%.

Figure H.1: FTIR spectra of bare silica support, after drying at 573 K for 16 hours and after calcined at 723 K for 2 hours.
LIST OF TABLES

Table 1.1: World fatty alcohol capacity development ('000 tonnes).

Table 1.2: ASEAN Fatty Alcohol Capacity Development ('000 tonnes).

Table 2.1: History and Development of Fatty Alcohol Processes.

Table 2.2: Natural Fatty Alcohol Processes.

Table 2.3: Synthetic Fatty Alcohol Processes.

Table 3.1: List of Chemical Used.

Table 3.2: List of Support Used.

Table 3.3: List of GC Standards Used.

Table 3.4: Preparation of Metal Precursor(s) P1.

Table 3.5: Preparation of Metal Precursor(s) P2.

Table 3.6: Information contained in the powder diffractogram.

Table 4.1: Summarize of the preliminary findings in Campaign I and II.

Table 4.2: Summary of the performance of the top-and-bottom-five proprietary catalysts

Table 4.3: Catalysts at different Cu: M2 at/at ratio

Table 5.1: Selection of catalysts (supported on silica) for various characterization analysis (highlighted in blues were the superior catalysts in the hydrogenolysis reaction).

Table 5.2: Characteristic of Cu-Zn samples after calcination.

Table 5.3: Characteristic of Cu-Fe samples after calcination.

Table 5.4: Main diffraction peaks related to CuO (JCPDS 45-0937)

Table 5.5: Main diffraction peaks related to ZnO (JCPDS 36-1451)

Table 5.6: Observation of nitrogen adsorption isotherm by region in bare silica support.

Table 5.7: Nitrogen adsorption-desorption analysis for precursor and calcined samples of A14, B14, A11 and B11.

Table 5.8: Nitrogen adsorption-desorption analysis of all samples in Cu-Zn and Cu-Fe series after calcination. Highlighted in blue are the sample prepared via
nitrate route, precursor P1.

Table 5.9: Averages of EDX measurements on samples

Table 5.10: UV/Vis band position and their assignments in accordance to literature

Table 5.11: FT-IR adsorption band position and their assignments for samples prepared via citrate-nitrate route (precursor P2).

Table 5.12: FT-IR adsorption band position and their assignments for samples prepared via nitrate route (precursor P1).

Table 5.13: Weight Loss at various steps and temperature as obtained from the thermal analysis data. (highlighted in yellow for precursors prepared via P1, blue for Cu-Zn series prepared via P2, green for Cu-Fe series prepared via P2 and none for mono-copper copper prepared via P2).

Table 5.14: DSC results of dried precursor samples (highlighted in yellow for precursors prepared via P1, blue for Cu-Zn series prepared via P2, green for Cu-Fe series prepared via P2 and none for mono-copper copper prepared via P2).

Table 5.15: Comparison of the metal oxide content by EDX and by TG

Table 5.16: Data summarized from TPR profile of Cu-Fe calcined samples (including mono-copper samples).

Table 5.17: Data summarized from TPR profile of Cu-Fe calcined samples (including mono-copper samples).

Table 6.1: Summary of characteristic parameters of the catalyst families studied. Colours denote the synthesis parameters (yellow P1, red P2 Cu-Zn series, blue P2 Cu-Fe series).

Table B.1: Single Impregnation Catalysts (SIWI).

Table B.2: Double Impregnation Catalysts (DIWI).

Table C.1: GC Method Development.

Table D.1: Calibration calculation of sample mixtures.

Table F.1: Summary of Catalytic Performances of proprietary catalysts