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ABSTRACT

Plastic waste ion and quantity g d is a growing concern in many countries

including Malaysia. Plastic waste contributes the third highest waste volume in
Malaysian municipal solid waste (MSW) next to putrecible waste and paper. In the
year 2000, plastic waste in MSW of Kuala Lumpur was 24.4% by weight from the
MSW and most of the plastic waste was dumped into landfills. Landfills in Malaysia
are reducing in its useful life as the amount of waste generated is growing every year by
2% and they have become an undesirable option of getting rid of plastic waste because
of the properties of plastics. Thus, efforts are being made to divert some plastic wastes

from landfills, or to use degradable plastics.

In this study a set of experiments was done to check on the compostability of
polyethylene and prooxidant additive based environmentally biodegradable plastics
under various conditions. The plastic samples were given by EPI Environmental
Plastics Inc. The samples were exposed hydrolytically or oxidatively at a temperature
similar to composting environment, which is 60°C. This was done to determine the
abiotic degradation path, that is, hydrolysis or oxidative. The next experiment was to
carry out the composting of the plastic samples through a 45 days-composting period.
The degradation of the polyethylene and prooxidant additive based environmentally
degradable plastics in these two experiments was determined by monitoring physical
and chemical properties, such as, weight lost, percentage elongation and Fourier
Transform Infra Red (FTIR) spectrum. Finally, degradable samples were exposed to
Pseudomonas aeruginosa on carbon free media for 28 days in microbiological

exposure experiment. Methods of determining the biodegsadability of the plastic



samples were checking: on weight loss of plastic samples and sign of bacterium

growth.

Plastic samples showed evidence of degradation in oxidative environment rather than
hydrolytic environment as shown by the physical appearance of linear low density
polyethylene (LLDPE) samples. The samples were brittle and changed colour from
pinkish to light brown. In addition to that, the samples also experienced a significant
weight loss of 8% and have been oxidised as shown by the addition of carbonyl groups
in the FTIR spectrum. The high density polyethylene (HDPE) samples did not show
any significant changes in weight loss, physical appearance and in FTIR spectrum.
However, the changes in percentage elongation for HDPE samples were significant, for
example McD, samples showed a reduction of 23.5% and TDP samples experienced a
60% reduction. Thus, this proves that oxidative environment is the optimum
environment for degradation. There are various factors that influenced the rate of
oxidative degradation. Among these are the amount of prooxidant additive, the
chemical structure and morphology of the plastic samples. By right HDPE samples
should degrade faster than LLPDE because its tendency to undergo chemicrystallisation
faster. However, in this study LLDPE samples degraded faster than HDPE. Perhaps the
amount of prooxidant additive Totally Degradable Plastic Additives (TDPA™) for
LLDPE samples, which was 4% higher than HDPE samples, affects the degradation
rate. In addition to that, LLDPE structure has higher amorphous regions that allowed
oxidation to take place within the polymer structure. Another factor that influenced the

ion of plastic les was the surface area. The higher the surface area,

rate of d

the faster the plastic samples degraded.



In the composting environment, percentage elongation for all samples showed
significant results of 20% reduction for McD samples and LL samples and 18%
reduction for TDP samples. Lastly, the microbiological trial exposure showed a
positive growth of bacteria and a weight loss of 2.2% for degraded polyethylene
samples. This is very encouraging, as this proved that the organisms were able to utilise
plastic samples as sole carbon source and thus confirming the biodegradability of the

EPI Environmental Plastics Inc. plastic samples.
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