Contents

Acknowledgement II
Abstract III
Abstrak IV

Chapter 1: Introduction 1
1.1 UV radiation (UVR) 1
1.2 Solar UV radiation 2
1.3 Solar radiation and zenith angle 3
1.4 Level of solar UV radiation 4
 1.4.1 Stratospheric ozone 4
 1.4.2 Time of day 5
 1.4.3 Time of Year 5
 1.4.4 Latitude 5
 1.4.5 Altitude 5
 1.4.6 Weather condition 6
 1.4.7 Reflection 7
1.5 Attenuation of solar UV radiation 7
 1.5.1 Rayleigh scattering 7
 1.5.2 Mie scattering 8
 1.5.3 Cloud reflection and absorption 9
 1.5.4 Aerosols attenuation 9

VI
1.6 Ozone
 1.6.1 Ozone depletion
 1.6.2 Ozone and chlorofluorocarbon (CFCs) compounds
1.7 Health effects from UV radiation
 1.7.1 Eye
 1.7.2 Skin
1.8 Dosimetry method for solar UV radiation
 1.8.1 UV detector
 1.8.1.1 Spectroradiometers
 1.8.1.2 Broad band instruments
 1.8.1.2.1 Thermal detectors
 1.8.1.2.2 Photoelectric detectors
 1.8.1.3 Personal dosimeters
1.9 UV radiation safety
 1.9.1 UV index
 1.9.2 UV radiation exposure limits
 1.9.3 Protection against solar UV radiation
1.10 UV radiation units
1.11 Objective of the project

Chapter 2: Thermoluminescence

2.1 Introduction
2.2 Luminescent and trap center
2.3 A general model for thermoluminescence

2.4 The glow curve

2.5 Typical TL response

2.6 Measurement of UV radiation using TL materials
 2.6.1 Transferred method
 2.6.2 Intrinsic method

2.7 Commercial TLD
 2.7.1 CaF₂
 2.7.2 CaSO₄
 2.7.3 Al₂O₃:C

2.8 Oxide, Borate and sulfate compound phosphor
 2.8.1 Gd₂O₃:Eu
 2.8.2 BaSO₄:Eu
 2.8.3 MgO

2.9 Doped alkali halides
 2.9.1 NaCl:Ca(T)
 2.9.2 KBr:Eu³⁺
 2.9.3 KCl:Eu³⁺

2.10 Handling technique of TL dosimeter
 2.10.1 Annealing
 2.10.2 Irradiation
 2.10.3 Storage and handling
 2.10.4 Readout
 2.10.4.1 TLD reader
Chapter 3: Experimental set-up and method

3.1 Introduction

3.2 Preparation of the powder
 3.2.1 Fabrication of TLD chips
 3.2.2 The range of percentage error in the reading of the chips

3.3 Calibration
 3.3.1 Calibration of Minolta UV meter
 3.3.1.1 Calibration result
 3.3.2 Calibration of deuterium UV lamp
 3.3.2.1 Irradiance measurement of deuterium UV lamp at 8 cm

3.4 Measurement of UV radiation using TL materials
 3.4.1 Lanthanide oxide (Ln2O3:RE3+)
 3.4.2 Commercial TLD

3.5 Exposure
 3.5.1 UV lamp
 3.5.1.1 Safety with UV lamp
 3.5.2 Sunlight

3.6 The electronic circuit noise of TLD reader
 3.6.1 PMT noise
 3.6.2 Background noise
3.6.3 Test light

3.6.4 The noise reading of TLD reader

3.7 Reading of the TLD chips

3.8 Thermal and light fading

3.9 Reproducibility

3.10 Reuse of TLD materials

3.11 Estimation of TL parameters (E & s)

3.12 Measurement of solar UV radiation using UV meter

3.13 Calibration of TL material

Chapter 4: The sensitivity of Ln$_2$O$_3$ to UV radiation

4.1 Introduction

4.2 Sensitivity to UV radiation

4.2.1 Y$_2$O$_3$

4.2.2 La$_2$O$_3$

4.2.3 Gd$_2$O$_3$

4.3 Sensitivity to sunlight

4.3.1 Long period of exposure

4.3.2 Short period of exposure

4.4 Glow curve

4.4.1 Glow curve after direct exposure to UV lamp

4.4.2 Glow curve for Y$_2$O$_3$ after 24 hours of exposure

4.4.3 Glow curve for La$_2$O$_3$ after 24 hours of exposure

4.4.4 Glow curve for Gd$_2$O$_3$ after 24 hours of exposure
Chapter 5: The sensitivity of commercial TLD to UV radiation

5.1 Introduction
5.2 Sensitivity to UV radiation
5.3 Sensitivity to sunlight
5.4 Glow curve
 5.4.1 UV Lamp
 5.4.2 Sunlight
5.5 Effect of light on TL intensity
5.6 Stability of TL intensity at room temperature
5.7 Reproducibility chart
5.8 Conclusion

Chapter 6: Observation of solar UVR in Campus of university of Malaya

6.1 Introduction
6.2 Average daily UV irradiance
6.3 Accumulation of UV radiation
6.4 Hourly percentage variations of UV radiation
6.5 Direct and indirect measurement of solar UV radiation
6.6 The effect of the climate changes in the intensity of solar UV radiation
6.7 Conclusion