Ack 6152

DEGRADABILITY IN GARDEN SOIL OF BACTERIAL

POLYHYDROXYALKANOATES (PHA) PRODUCED FROM SAPONIFIED

PALM KERNEL OIL

ΒY

SHAZA EVA BT MOHAMAD

BAUAN TERHAD

DISSERTATION SUBMITTED IN PARTIAL FULFILMENT FOR THE

DEGREE OF MASTER OF BIOTECHNOLOGY

INSTITUTE OF POSTGRADUATE STUDIES AND RESEARCH

UNIVERSITY OF MALAYA

KUALA LUMPUR

AUGUST 1999 Perpustakaan Universiti Malaya

i

ABSTRACT

ABSTRACT

Polyhydroxyalkanoates (PHA) was tested for its biodegradability in garden soil under natural and enclosed environment. The moisture content in soil was found to be around 20% in both environments at day 0 and day 90. The pH of the soil in both environments was found to be 6.5 at day 0 and 6.0 at day 90 which gave an indication of the hydroxyalkanoic acids accumulation due to degradation of PHA. Under natural and enclosed environment the PHA was found to decrease in its gross weight. Carbon dioxide evolution was measured for the PHA under enclosed environment and approximately 15.7% of the test material was evolved as CO2 at day 90. Studies of surface morphology using phase contrast microscope and electron microscope showed that the surface of the polymer after being buried differed from the PHA before the degradation process. The fractured and rough surface with cracks and holes could be seen under electron microscope. These conditions were probably due to the activities of the microbes in the soil as well as to some environmental factor such as hydrolysis. The infrared spectrophotometry showed that overall structure of the repeating units of the PHA remained after degradation. As for the gas chromatography analysis, there appeared a trend whereby with time the longer monomers (C10, C12 and C14) decreased with a corresponding increased in the shorter monomers (C6 and C8).

ACKNOWLEDGEMENT

Bismillahirrahmanirrahim

This thesis represents the invaluable and dedicated efforts of many individuals, all of whom deserves special thanks... supervisor and cosupervisor, Dr. Irene Tan Kit Ping and Dr. Gan Seng Neon, my labmates; Zali, Suffian ,Yen Him and Viji from the EM lab, my ex-housemates Ane...thank you very much for letting me use the computer and also Jit, Baby and Mina. My very best friend ...Sha...and last but not least my beloved husband and family especially papa and mak whom prayers, supports and encouragement have lead me through the way...

Without the help of Allah s.w.t. The most Gracious and Merciful, I might not be here and be what I want. Thank you very much.

Also for my "coming soon" little baby.... stay healthy in mama's tummy!!!

Wassalam

CONTENTS

Page

TITLE		i
ABSTRA	ст	ii
ACKNOV	VLEDGEMENTS	ш
CONTEN	TS	iv
LIST AB	BREVIATIONS	viii
LIST OF	FIGURES	×
LIST OF	TABLES	×ii
LIST OF	PLATES	xiii
CHAPTE	R ONE: INTRODUCTION	1
CHAPTE	R TWO: LITERATURE REVIEW	
2.1	PHA and its importance	6
2.2	Standards development for biodegradable plastics	7
2.3	Description of current test methods	
	2.3.1 Screening tests for ready biodegradability	10
	2.3.2 Tests for inherent biodegradability	13
	2.3.3 Tests for simulation studies	15
2.4	Other methods involving assessing of polymer biodegradability	
	2.4.1 Petri dish screen	15

	2.4.2 Environmental chamber	16
	2.4.3 Soil burial test	16
2.5	Choice of environment	17
2.6	Degradation of biodegradable polymer through different disposal routes	
	2.6.1 Composting	19
	2.6.2 Sewage sludge	20
	2.6.3 River water	21
	2.6.4 Seawater	22
	2.6.5 Freshwater	23
	2.6.6 Lakewater	23
	2.6.7 Soils	24
2.7	Rationale behind the research of biodegradability of polyhydroxyalkanoates	26
2.8	Objective of this study	27

CHAPTER THREE: MATERIALS AND METHODS

3.1	PHA	production	
	3.1.1	Bacterial strain	28
	3.1.2	Stock culture storage	28
	3.1.3	Media and growth condition	28
	3.1.4	Palm kernel oil	30
	3.1.5	Saponification of PKO	30
	3.1.6	Extraction of PHA	31

3.2	Biode	gradability testing methods in soil	
	3.2.1	Natural environment	31
	3.2.2	Enclosed environment	33
3.3	Studie	es of soil condition for biodegradation	
	3.3.1	Moisture content of soil	35
	3.3.2	pH of soil	35
3.4	The A	nalytical Studies of Biodegradability	
	3.4.1	Gross weight loss	36
	3.4.2	Surface morphology of PHA	
		3.4.2.1 Phase contrast microscopy	36
		3.4.2.2 Electron microscopy	37
	3.4.3	Carbon dioxide evolution	37
	3.4.4	Characterization by Infrared Spectrophotometry	40
	3.4.5	Characterization by Gas Chromatography	41
	D FOUR	DEALIN TO AND DIRACHORION	

CHAPTER FOUR: RESULTS AND DISCUSSION

4.2 The Analytical Studies of Biodegradability

4.1	.1 Studies of soil condition for biodegradation		
	4.1.1	Moisture content of soil	50
	4.1.2	pH of soil	51

4.2.1	Gross weight loss	52

4.2.2	Surface morphology of PHA	
	4.2.2.1 Phase contrast microscopy	57
	4.2.2.2 Electron microscopy	58
4.2.3	Carbon dioxide evolution	63
4.2.4	Infrared spectrophotometry	67
4.2.5	Gas chromatography	73

CHAPTER FIVE: CONCLUSION

REFERENCES

84

80

LIST OF ABBREVIATIONS

ASTM	= American Society of Testing and Materials
Ba(OH) ₂	= Barium hydroxide
BaCO ₃	= Barium carbonate
BOD	= Biochemical oxygen demand
CO ₂	= Carbon dioxide
CH₄	= Methane
DIN	= Deutsches Institut fur Normung
DOC	= Dissolved organic carbon
EM	= Electron microscope
EU	= European Union
et al	= et alia (and others)
GC	= Gas chromatography
ISO	= International Standards Organization
IR	= Infrared spectrophotometry
O ₂	= Oxygen
OECD	= Organization for Economic Cooperation and Development
PHA	= Polyhydroxyalkanoates
РНВ	= Polyhydroxybutyrate
РКО	= Palm kernel oil
PORIM	= Palm Oil Research Industry Malaysia
PE	= Polyethylene

PP	= Polypropylene
PVC	= Polyvinyl chloride
RT	= Retention time
R _f	= Reference factor
SEM	= Scanning electron microscopy
SPKO	= Saponified palm kernel oil

LIST OF FIGURES

FIGURE

PAGE

1	Schematic arrangement of modified Sturm test	12
100	Chrumodogram of PHA at day 8	12
2	Schematic arrangement for assessing biodegradability in soil using infrared detection of CO ₂ evolution	14
3	Diagrammatic area of burial site	32
4	Aerobic gas production equipment test	33
5(a)	R _f versus concentration of C8 methyl ester	46
5(b)	R _f versus concentration of C10 methyl ester	46
5(c)	R _f versus concentration of C12 methyl ester	47
5(d)	R _f versus concentration of C14 methyl ester	47
5(e)	Different concentration of C8 versus $R_{\rm f}$ is plotted to get the $R_{\rm f}$ data for C6	48
5(f)	R _f versus concentration of C6 methyl ester	48
6	Retention time versus carbon number of the standards	49
7	Percentage of weight loss of PHA in natural environment	56
8	Percentage of carbon dioxide evolved from the enclosed environment	65
9(a)	IR spectra of PHA before degradation, day 0	71
9(b)	IR spectra of PHA after buried for 11 days in the natural environment	71
9(c)	IR spectra of PHA buried in the natural environment for 45 days	72

9(d)	IR spectra of PHA buried in the natural environment for 90 days	73
10	Monomer content of the PHA after various periods of burial	76
11	Gas chromatogram of standards: methyl ester of fattty acids	77
12(a)	Chromatogram of PHA at day 0	78
12(b)	Chromatogram of PHA after 11 days buried in the soil of natural environment	78
12(c)	Chromatogram of PHA after 45 days buried in the soil of natural environment	79
12(d)	Chromatogram of PHA after 90 days buried in the soil of natural environment	79

LIST OF TABLES

TAB	LE	PAGE
1	Test protocols for determining ready biodegradability in OECD guidelines	10
2	Disposal routes for bioploymer	17
3	Types of medium used in culturing	29
4	Results of percentage moisture content in soil	49
5	Results of gross weight loss	53
6	Percentage of CO ₂ evolved in the enclosed environment	64
7	Characteristic of IR absorptions detected in PHA studied before and after degradation in garden soil of natural environment	70
8	Mole percentage of monomers in the PHA after different burial periods in natural environment	75

LIST OF PLATES

PLATE		PAGE
1(a)	Surface of PHA viewed under phase contrast microscope at day 0 at 200X magnification	60
1(b)	Surface of PHA buried in the soil of natural environment viewed under phase contrast microscope at day 11 at 200X magnification	60
1(c)	Surface of PHA buried in the soil of natural environment viewed under phase contrast microscope at day 45 at 200X magnification	60
1(d)	Surface of PHA buried in the soil of natural environment viewed under phase contrast microscope at day 90 at 200X magnification	60
2(a)	Surface of PHA scanned under EM at day 0 at 2000X magnification	61
2(b)	Surface of PHA buried in the soil of natural environment scanned under EM at day 11 at 2000X magnification	61
2(c)	Surface of PHA buried in the soil of natural environment scanned under EM at day 45 at 2000X magnification	61
2(d)	Surface of PHA buried in the soil of natural environment scanned under EM at day 90 at 2000X magnification	61
3	Surface of PHA buried in the enclosed environment scanned under EM at day 90 at 2000X magnification	62